Một con lắc lò xo có khối lượng m dao động cưỡng bức ổn định dưới tác dụng của ngoại lực biến...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Chọn A

+ Tần số riêng của con lắc: 

Khi f = fo thì A = Amax ~ fo2.

+ Đồ thị sự phụ thuộc của biên độ dao động cưỡng bức vào tần số của ngoại lực như hình vẽ. Biên độ của dao động cưỡng bức phụ thuộc f – fo. Khi f = fo thì A = Amax.

+ Do A1 = A2  nên fo – f1 = f2 – fo => 2fo = f1 + f2 => 4fo2 = ( f1 + f2)2

Thay (1) vào => k = π2m(f1 + f2)2

18 tháng 7 2020

\(x_1^2+\frac{v_1^2}{\omega^2}=x_2^2+\frac{v_2^2}{\omega^2}\Rightarrow\omega=\sqrt{\frac{v_2^2-v_1^2}{x_1^2-x_2^2}}=10\pi\)

Do pt của 4 ngoại lực có biên độ bằng nhau, để con lắc dao động với biên độ nhỏ nhất trong giai đoạn ổn định thì \(\left|\omega-\omega_F\right|\) là lớn nhất

\(\Rightarrow\) Đáp án B đúng (không chắc lắm :( )

29 tháng 8 2016

Năng lượng dao động: \(W=\dfrac{1}{2}kA^2=2.10^{-2}\) (1)

Lực đàn hồi cực đại: \(F_{dhmax}=k(\Delta \ell_0+A)=4\) (2)

Lực đàn hồi khi ở VTCB: \(F_{cb}=k.\Delta\ell_0=2\) (3)

Từ (2) và (3) suy ra: \(k.A=2\) (4)

Thế (4) vào (1) suy ra: \(A=2.10^{-2}m=2cm\)

27 tháng 6 2017

Tần số góc: \(\omega = 2\pi/T = 4\pi (rad/s)\)

Độ cứng lò xo: \(k=m.\omega^2=0,4.(4\pi)^2=64(N/m)\)

Lực đàn hồi cực đại tác dụng vào vật: \(F_{dhmax}=k.A = 64.0,08=5,12N\)

25 tháng 4 2019

Tan so goc:=2 π/T=4π (rad/s)

Do cung lo xo:k=m.w2=0,4.(4π)2 =64(N/m)

Luc dan hoi cuc dai tac dung vao vat:

Fd/max=K..A=64.0,08=5,12N

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

O
ongtho
Giáo viên
28 tháng 2 2016

\(hf_1 = A+\frac{1}{2}mv_1^2=>\frac{1}{2}mv_1^2= hf_1-A .(1)\)

\(hf_2 = A+\frac{1}{2}mv_2^2= A+4\frac{1}{2}mv_1^2 .(2)\)Do \(v_2=2 v_1\)

Thay phương trình (1) vào (2) =>

 => \(hf_2 = A+4.(hf_1-A)\) 

=> \(3A= 4hf_1-hf_2\)

=> \(A = \frac{h.(4f_1-f_2)}{3}.\)

 

O
ongtho
Giáo viên
15 tháng 2 2016

Hệ thức Anh -xtanh: 

\(hf_1 = A+eU_h=A+eV_1.\)

\(hf_2 =A+eU_h= A+eV_2.\)

Mà f1 < f=> \(hf _1 < hf_2\)

Lại có A không đổi => \(eV_1 < eV_2\) hay \(V_1 < V_2\).

Nếu chiếu đồng thời hai bức xạ có tần số lần lượt là f1, f2 (f1 < f2) thì hiệu điện thế cực đại của nó đạt được là \(V_2\).

2 tháng 1 2017

Vật kéo xuống 5cm từ VTCB và thả không vận tốc đầu nên A=5cm

\(\Delta l_0=\frac{mg}{k}=0,05\left(m\right)=5\left(cm\right)\)

Nhận thấy \(A=\Delta l_0\) nên:

+) \(F_{min}=0\left(N\right)\)

+) \(F_{max}=k\left(\Delta l_0+A\right)=40\left(0,05+0,05\right)=4\left(N\right)\)

9 tháng 9 2015


\(\lambda = v/f = 0.8/100 = 0.008m = 0.8cm.\)

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{0}{\lambda}-\frac{0}{2\pi})| = |2a| = 2a.\)

\(u_M = A_M\cos(2\pi ft - \pi\frac{d_2+d_1}{\lambda}+\frac{\varphi_1+\varphi_2}{2})\\= A_M\cos(200\pi t - \pi\frac{8+8}{0.8}+\frac{0}{2})= 2a\cos(200\pi t - \pi\frac{8+8}{0.8})= 2a\cos(200\pi t-20\pi)=2a\cos(200\pi t)\)

21 tháng 11 2017

đáp án D mà