Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi $20'=\frac{1}{3}$ h
Gọi vận tốc riêng của cano là $a$ (km/h). ĐK $a>6$.
Vận tốc xuôi dòng: $a+6$ km/h
Vận tốc ngược dòng: $a-6$ km/h
Theo bài ra ta có:
$\frac{AB}{a-6}-\frac{AB}{a+6}=\frac{1}{3}$$\Leftrightarrow \frac{60}{a-6}-\frac{60}{a+6}=\frac{1}{3}$
$\Leftrightarrow a^2-36=2160$
$\Leftrightarrow a^2=2196$
$\Rightarrow a=6\sqrt{61}$ (km/h)
Gọi khoảng cách AB là x
Vận tốc thực ko đổi
=>Vận tốc từ B về A là 30km/h
Theo đề, ta có: x/33+x/27=2/3
=>x=99/10
Gọi khoảng cách giữa A và B là \(x\left(km\right)\)
Khi đó bạn sẽ có 2 phương trình theo đề bài:
Thời gian khi xuôi dòng từ A đến B là: \(t_1=\dfrac{x}{\left(30+3\right)}\)
Thời gian khi ngược dòng từ B về A là: \(t_2=\dfrac{x}{\left(30-3\right)}\)
Mà thời gian khi xuôi dòng ít hơn thời gian khi ngược dòng là \(\dfrac{2}{3}\) giờ
\(t_1+\dfrac{2}{3}=t_2\)
\(\Leftrightarrow\dfrac{x}{\left(30+3\right)}+\dfrac{2}{3}=\dfrac{x}{\left(30-3\right)}\)
\(\Leftrightarrow\dfrac{x}{33}+\dfrac{2}{3}=\dfrac{x}{27}\)
\(\Leftrightarrow\dfrac{x}{33}+\dfrac{22}{33}=\dfrac{x}{27}\)
\(\Leftrightarrow\dfrac{x+22}{33}=\dfrac{x}{27}\)
\(\Leftrightarrow27\left(x+22\right)=33x\)
\(\Leftrightarrow27x+594=33x\)
\(\Leftrightarrow594=33x-27x=6x\)
\(\Leftrightarrow x=\dfrac{594}{6}=99\left(km\right)\)
Vậy quãng đường AB có độ dài 99km
Gọi vận tốc của cano khi nước đứng yên là : x km/h (x>4)
Vận tốc của cano khi đi xuôi dòng là: x+4(km/h)
Vận tốc của ca nô khi ngược dòng là x-4(km/h)
Thời gian đi xuôi dòng là 48/(x+4)h
Thời gian đi ngược dòng là 48/(x-4)h
THeo bài ra ta có p t
\(\frac{48}{x+4}+\frac{48}{x-4}=5\Leftrightarrow48\left(x-4\right)+48\left(x+4\right)=5\left(x^2-16\right)\)
\(\Leftrightarrow48x-48.4+48x+48.4=5x^2-80\Leftrightarrow5x^2-96x-80=0\)
Giải ra nghiệm của pt ( chắc là co hai nghiệm âm và dương loại âm ra vì Đk x>4)
Gọi độ dài AB là a
Thời gian đi là a/33
Thời gian về là a/27
Theo đề, ta co: a/27-a/33=2/3
=>a=99
gọi x là thời gian cano đi lúc xuôi dòng (đk : x > 2)
⇒ lúc ngược dòng là x - 2
⇒ vận tốc lúc xuôi là \(\dfrac{90}{x}\)
⇒ vận tốc lúc ngược dòng là \(\dfrac{36}{x-2}\)
⇒ pt :\(\dfrac{90}{x}\) = \(\dfrac{36}{x-2}\) + 6
⇔ 90.(x - 2) = 36x + 6x.(x - 2)
⇔ 90x - 180 = 36x + 6x2 - 12x
⇔ 90x - 36x + 12 = 6x2 + 180
⇔ 6x2+ 180 = 90x - 36x + 12
⇔ 6x2 + 180 = 66x
⇔ 6x2 - 66x + 180 = 0
⇔ 6x2 - 30x - 36x + 180 = 0
⇔ 6x.(x - 5) - 36.(x - 5) = 0
⇔ (6x - 36).(x - 5) = 0
⇔ 6.(x - 6).(x - 5) = 0
⇔ x - 6 = 0 hoặc x - 5 = 0
⇔ x = 6 (nhận) hoặc x = 5 (nhận)
TH1 : x = 6
⇒ vận tốc lúc xuôi là 15 km/h
⇒ vận tốc lúc ngược dòng là 9 km/h
TH2 : x = 5
⇒vận tốc lúc xuôi là 18 km/h
⇒ vận tốc lúc ngược dòng là 12 km/h
Vận tốc của cano khi đi ngược dòng là:
15-2,5=12,5(km/giờ)
Vậy quãng đường từ A đến B là:
12,5.2=25(km)
À bạn ơi ,bài này toán lớp 6 mà,chắc bạn ghi nhầm đó,k nha
ủa bạn ơi câu này mk ôn thi vào 10 mà