K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

Bài 1.

[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >

= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2

Đặt t = x - y

bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2

           = 4t5 : t2 + 2t3 : t2 - 3t2 : t2

           = 4t3 + 2t - 3

           = 4( x - y )3 + 2( x - y ) - 3

Bài 2.

5x( x - 2 ) + 3x - 6 = 0

⇔ 5x( x - 2 ) + 3( x - 2 ) = 0

⇔ ( x - 2 )( 5x + 3 ) = 0

⇔ x - 2 = 0 hoặc 5x + 3 = 0

⇔ x = 2 hoăc x = -3/5

Bài 3.

A = x2 - 6x + 2023

= ( x2 - 6x + 9 ) + 2014

= ( x - 3 )2 + 2014 ≥ 2014 ∀ x

Dấu "=" xảy ra khi x = 3

=> MinA = 2014 <=> x = 3

Bài 4.

B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )

= [ ( 3x + 5 ) - ( 3x - 5 ) ]2

= ( 3x + 5 - 3x + 5 )2

= 102 = 100

Vậy B không phụ thuộc vào x ( đpcm )

Bài 6.

C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152

= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1

= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1

= 4029 + ... + 9 + 5 + 1

\(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)

= 2 031 120

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)

21 tháng 10 2018

Bài 1 :

a) \(x^2-6x+2023\)

\(=x^2-2\cdot x\cdot3+3^2+2014\)

\(=\left(x-3\right)^2+2014\ge2014\forall x\)

Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)

Dễ thấy đây là HĐT thứ 2

\(B=\left(3x-5-3x-5\right)^2\)

\(B=\left(-10\right)^2\)

\(B=100\)

=> tự kết luận

Bài 2 :

\(x^2+4x-45\)

\(=x^2+9x-5x-45\)

\(=x\left(x+9\right)-5\left(x+9\right)\)

\(=\left(x+9\right)\left(x-5\right)\)

21 tháng 10 2018

1a) A=x2 - 6x + 9 +2014

A= (x-3)2 + 2014

ta có: (x-3)2\(\ge\)0\(\forall x\)

\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)

Dấu "=" xảy ra <=> (x+3)2 = 0

                        <=> x+3=0

                        <=> x = -3

Vậy Amin=2014 <=> x = -3

b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\) 

\(\left(3x+5-3x+5\right)^2\)

= 5= 25

2)\(x^2+4x-45\)

\(x^2+9x-5x-45\)

=\(x\left(x+9\right)-5\left(x+9\right)\)

=\(\left(x-5\right)\left(x+9\right)\)

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5) Bài 11: 1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5 2. Tìm n để đa thức...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

Chương II

* Dạng toán rút gọn phân thức

Bài 1.Rút gọn phân thức:a. 3x(1 - x)/2(x-1) b.6x^2y^2/8xy^5 c3(x-y)(x-z)^2/6(x-y)(x-z)

Bài 2: Rút gọn các phân thức sau:a)x^2-16/4x-x^2(x khác 0,x khác 4) b)x^2+4x+3/2x+6(x khác -3) c) 15x(x+y)^3/5y(x+y)^2(y+(x+y) khác 0). d)5(x-y)-3(y-x)/10(10(x-y)(x khác y) 2x+2y+5x+5y/2x+2y-5x-5y(x khác -y) f)15x(x+y)^3/5y(x+y)^2(x khác y,y khác 0)

Bài 3: Rút gọn, rồi tính giá trị các phân thức sau:

a) A=(2x^2+2x)(x-2)^2/(x^3-4x)(x+1) với x=1/2 b)B=x^3-x^2y+xy2/x^3+y^3 với x=-5,y=10

Bài 4;Rút gọn các phân thức sau:

a) (a+b)^/a+b+c b) a^2+b^2-c^2+2ab/a^2-b^2+c^2+2ac c) 2x^3-7x^2-12x+45/3x^3-19x^2+33x-9

2
31 tháng 12 2017

Bài 12:

1) A = x2 - 6x + 11

= (x2 - 6x + 9) + 2

= (x - 3)2 + 2

Ta có: (x - 3)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3

Do đó: (x - 3)2 + 2 ≥ 2

Hay A ≥ 2

Dấu ''='' xảy ra khi x = 3

Vậy Min A = 2 tại x = 3

2) B = x2 - 20x + 101

= (x2 - 20x + 100) + 1

= (x - 10)2 + 1

Ta có: (x - 10)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10

Do đó: (x - 10)2 + 1 ≥ 1

Hay B ≥ 1

Dấu ''='' xảy ra khi x = 10

Vậy Min B = 1 tại x = 10

27 tháng 11 2019

Sao bạn KO tách ra cho dễ nhìn

3 tháng 10 2023

Bài 4.

\(A=2x^3+(x+1)^3-3x(x-2)(x+2)-3(x^2+5x+9)\\=2x^3+(x^3+3x^2+3x+1)-3x(x^2-4)-3x^2-15x-27\\=2x^3+x^3+3x^2+3x+1-3x^3+12x-3x^2-15x-27\\=(2x^3+x^3-3x^3)+(3x^2-3x^2)+(3x+12x-15x)+(1-27)\\=-26\\---\)

\(B=x(x-4x)+x(2-x)(x+2)+4(2x^2-5x+4)\\=x\cdot(-3x)+x(2-x)(2+x)+8x^2-20x+16\\=-3x^2+x(4-x^2)+8x^2-20x+16\\=-3x^2+4x-x^3+8x^2-20x+16\)

Bạn kiểm tra lại đề giúp mình!

\(C=(x-2y)(x^2+2xy+4y^2)-(x^3-8y^3+10)\) (sửa đề)

\(=x^3-(2y)^3-x^3+8y^2-10\\=x^3-8y^3-x^3+8y^3-10\\=(x^3-x^3)+(-8y^3+8y^3)-10\\=-10\)

Bài 5.

\(d)xy^2-3x^3y^2-2x(xy-3xy^2)\\=xy^2-3x^3y^2-2x^2y+6x^2y^2\\---\\f)(x-y)(2x+y)-2x^2+y^2+3xy\\=x(2x+y)-y(2x+y)-2x^2+y^2+3xy\\=2x^2+xy-2xy-y^2-2x^2+y^2+3xy\\=(2x^2-2x^2)+(xy-2xy+3xy)+(-y^2+y^2)\\=2xy\)

\(Toru\)

3 tháng 10 2023

cảm ơn bạn nhiều nhé. Câu C mình gõ phím vội nên quên mất ;để mik sửa

C=(x-2y)(x2+2xy+4x2)-(x3-8y3+10)

18 tháng 12 2017

A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x

= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x

= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)

= -10

Vậy A ko phụ thuộc vào giá trị của biến x

18 tháng 12 2017

a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10 

=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến

k mk nha

đỡ mik vớiCâu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc  c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abcCâu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :a/ 6x2y2-4y4b/ -6x2y2+4y4c/-6x2y2-4y4d/ 18x4-4y4Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:a/ 0      b/ 40x   c/ -40x     d/ Kết quả khácCâu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả...
Đọc tiếp

đỡ mik với

Câu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :
a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc 

 c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abc

Câu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :

a/ 6x2y2-4y4
b/ -6x2y2+4y4
c/-6x2y2-4y4
d/ 18x4-4y4

Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:
a/ 0      b/ 40x   c/ -40x     d/ Kết quả khác
Câu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả thực hiện phép tính là
a/ 6x2-15x -55          b/ -43x-55      c/ K phụ thuộc biến x       d/ Kết qủa khác
Câu 14: Tính (x-y)(2x-y) ta được :
a/ 2x2+3xy-y2
b/ 2x2-3xy+y2
c/ 2x2-xy+y2
d/ 2x2+xy –y

Câu 15: Tính (x2
-2xy+y2
).(x-y) bằng :

a/-x
3
-3x2y+3xy2
-y
3
b/x3
-3x2y+3xy2
-y
3
c/x3
-3x2y-3xy2
-y
3
d/-x3-3x2y+3xy2+y3

Câu 16: Biểu thức rút gọn của (2x+y)(4x2
-2xy+y2
) là :

a/ 2x3
-y
3
b/ x3
-8y3
c/ 8x3
-y
3
d/8x3+y3

Câu 17: Tính (x-2)(x-5) bằng
a/ x2+10 b/ x2+7x+10 c/ x2

-7x+10 d/ x2
-3x+10

Câu 18: Cho A=3.(2x-3)(3x+2)-2(x+4)(4x-3)+9x(4-x). Để A có giá trị bằng 0 thì x
bằng :
a/ 2 b/ 3 c/ Cả a,b đều đúng d/ Kết quả khác
Câu 19: Tìm x biết (5x-3)(7x+2)-35x(x-1)=42. x bằng
a/ -2 b/
1
2
c/ 2 d/ Kết quả khác
Câu 20: Tìm x biết (3x+5)(2x-1)+(5-6x)(x+2)=x . giá trị x bằng
a/ 5 b/ -5 c/ -3 d/ Kết quả khác
câu 21: Giá trị của biểu thức A =(2x+y)(2z+y)+(x-y)(y-z) với x=1;y=1 ;z=-1 là
a/ 3 b/ -3 c/2 d/-2
Câu 22: Giá trị của x thoả mãn (10x+9).x-(5x-1)(2x+3) =8 là
a/1,5 b/ 1,25 c/ -1,25 d/3
Câu 23: Giá trị x thoả mãn ;x(x+1)(x+6)-x3 =5x là

a/ 0 b/17− c/ 0 hoặc17d/ 0 hoặc17−

Câu 25: Giá trị nhỏ nhất của y=(x-3)2 +1 là
a/ khi x=3 b/3 khi x=1 c/ 0 khi x=3 d/ không có GTNN trên TXĐ
Câu 26: Chọn câu sai
Với mọi số tự nhiên n,giá trị của biểu thức (n+7)2-(n-5)2chia hết cho

a/ 24 b/16 c/8 d/ 6
Câu 27: Rút gọn biểu thức (x+y)2 +(x-y)2-2x2ta được kết quả là :

a/ 2y b/2y2c/-2y2d/ 4x+2y2
Câu 28: Với mọi giá trị của biến số giá trị của biểu thức 16x4-40x2y3 +25y6là 1 số
a/ dương b/Không dương c/ âm d/ không âm
Câu 29: Thực hiện phép tính :( 5x+4)2 +(1-5x)2 +2(5x+4)(1-5x) ta được
a/ (x+5)2
b/ (3+10x)2

c/ 9 d/25

Câu 30: Thực hiện phép tính (2x-3)2 +(3x+2)2 +13(1-x)(1+x) ta được kết quả là :
a/ 26x2
b/ 0 c/-26 d/26
Câu 31: Chọn kết quả đúng ; (2x+3y)(2x-3y) bằng
a/ 4x2-9y2
b/ 2x2-3y2
c/ 4x2+9y2

d/ 4x-9y

Câu 32: Tính Tính (x+1/4)^2ta được :

a/ x2-12x + 1/4

b/ x2 +12x + 18
c/ x2 +12x + 116
d/ x2-12x -1/4

Câu 33: Với mọi x thuộc R phát biểu nào sau đây là sai
a/ x2-2x+3>0 b/ 6x-x2-10<0 c/ x2 –x-100<0 d/ x2 –x+1>0

9
4 tháng 12 2021
1÷+×/=÷#$%!=
4 tháng 12 2021

chúc mng lm bài được

15 tháng 12 2017

Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x 

1) A= (3x-5)(2x+11)-(2x+3)(3x+7)

A = 6x2 -10x +33x -55 - (6x2 +9x +14x +21)

A = 6x2 -10x +33x -55 - 6x2 - 9x - 14x - 21

A = -76

Vậy A không phụ thuộc vào biến x

2) tìm số nguyên a hay số thực bạn xem lại đầu bài nhé

3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017 

A = 4x2 -8x +2017  = (2x)2 -2.2x.2 +22 +2015 = (2x-2)2 +2015

Ta có (2x-2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0

vậy A = (2x-2)2 +2015  nhỏ nhất là bằng 2015 khi và chỉ khi 2x-2 = 0    <=>   x = 1