Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BIKH có
KH//IB
IK//BH
Do đó: BIKH là hình bình hành
Suy ra: KH=BI
Xét ΔABC có
I là trung điểm của AB
IK//BC
Do đó: K là trung điểm của AC
hay KA=KC
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF và AD=CF
=>BD=CF và BD//CF
Xét ΔBDC và ΔFCD có
\(\widehat{BDC}=\widehat{FCD}\)
DC chung
\(\widehat{BCD}=\widehat{FDC}\)
Do đó:ΔBDC=ΔFCD
b: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và DE=1/2BC
Ta có hình vẽ:
Ta có: AB // DF hay AE // DF
=> góc AEI = góc IFD (slt)
Ta có: AE // DE => góc EAI = góc IDF (slt)
Tổng ba góc trong tam giác = 1800
=> 1800 - AEI - EAI = 1800 - IFD - IDF
hay góc AIE = góc DIF (*)
Ta có: góc AEI = góc IFD (cmt) (**)
EI = FI (I là trung điểm EF) (***)
Từ (*),(**),(***) => tam giác AEI = tam giác DFI
=> AI = DI (2 cạnh tương ứng) (1)
Ta có: góc AIE = góc DIF (chứng minh trên)
Mà góc AIE + góc AIF = 1800 (kề bù)
=> góc DIF + góc AIF = 1800
hay AID = 1800
hay A,I,D thẳng hàng với nhau (2)
Từ (1),(2) => I là trung điểm của AD
-> Ta có đpcm.
a, Xét \(\Delta ABD\) và \(\Delta ACE\) vuông tại \(D;E\) có:
\(AB=AC\left(\Delta ABC-cân\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\left(1\right)\)
\(\Rightarrow BD=CE\left(2c.t.ứ\right)\)
b, Từ \(\left(1\right)\Rightarrow AD=AE\left(2c.t.ứ\right)\)
\(\Rightarrow\Delta ADE\) cân tại \(A\)
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
c, Từ \(\left(3\right)\left(2\right)\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà 2 góc đang ở vị trí đồng vị nên:
\(\Rightarrow DE//BC\)
d, Xét \(\Delta EIB\) và \(\Delta DIC\) vuông tại \(E;D\) có:
\(EB=DC\left(AB=AC;EA=DA\right)\)
\(\widehat{EIB}=\widehat{DIC}\left(đ.đỉnh\right)\)
\(\Rightarrow\Delta EIB=\Delta DIC\left(cgv-gnđ\right)\left(4\right)\)
e, Xét \(\Delta BIE\) có:
\(\widehat{BEI}=90^0\)
\(\Rightarrow\Delta BIE\) vuông tại \(E\)
f, Từ \(\left(4\right)\Rightarrow BI=CI\left(2c.t.ứ\right)\left(5\right)\)
Ta có: \(BM=CM\left(M-là-t.điểm-BC\right)\)
\(\Rightarrow D\in\) đường trung trực \(BC\left(6\right)\)
Từ \(\left(5\right)\Rightarrow I\in\) đường trung trực \(BC\left(7\right)\)
Và \(AB=AC\Rightarrow A\in\) đường trung trực \(BC\left(8\right)\)
Từ \(\left(6\right)\left(7\right)\left(8\right)\Rightarrow A;I;M\) thẳng hàng.
P/s: Sửa đề Gọi \(M\) là trung điểm \(BC\)
Nếu nhưu gọi \(D\) thì nó bị trùng rồi bạn.
Có gì không hiểu thì hỏi ^_^