Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{x^2+2x+1}{x+2}=\frac{\left(x+1\right)^2}{x+2}\ge0\forall x>-2\) có GTNN là 0
bạn có viết có dấu được không thông cảm cho do khó đọc quá
(x+1)/2011+1+(x+2)/2010+1+(x+3)/2009+1-((x+4)/2008+1+(x+5)/2007+1+(x+6)/2006+1)=0
(x+2012)/2011+(x+2012)/2010+(x+2012/2009-(x+2012)/2008-(x+2012)/2007-(x+2012)/2006=0
(x+2012)(1/2011+1/2010+1/2009-1/2008-1/2007-1/2006)=0
x+2012=0
x=-2012
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\frac{2x}{x-1}\)( Điều kiện \(x\ne0\))
VT = \(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-\frac{3x^2}{3x}-\frac{3x}{3x}\right)\right].\frac{x}{x-1}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1-3x^2-3x}{3x}\right)\right].\frac{x}{x-1}\)
\(=\left(\frac{2}{3x}-\frac{2}{x+1}.\frac{-3x\left(x+1\right)+\left(x+1\right)}{3x}\right).\frac{x}{x-1}\)
\(=\left(\frac{2}{3x}-\frac{2}{x+1}.\frac{\left(x+1\right)\left(-3x+1\right)}{3x}\right).\frac{x}{x-1}\)
\(=\frac{2}{3x}-\frac{2x\left(-3x+1\right)}{3x}.\frac{x}{x-1}\)
\(=\left(\frac{2+6x-2}{3x}\right).\frac{x}{x-1}\)
\(=\frac{6x}{3x}.\frac{x}{x-1}\)
\(=\frac{2x}{x-1}=VP\)
Vậy đẳng thức được chứng minh .
mong ban hay nhan co dau di, khong dau tui nhin ngua mat la tui con tra loi dai dai do
Phiền bạn đừng đăng linh tinh !!!
Học tốt !!!