Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow4x^2-20x+25-4x^2+12x=0\)
=>-8x=-25
hay x=25/8
1.
a) x (x - 5) + (x + 3)(x - 3)=
= x^2 - 5x + (x + 3)(x - 3)
= x^2 - 5x + x^2 - 9
= x^2 + x^2 - 5x - 9
= 2x^2 - 5x - 9.
b. không thể nhìn thấy hết bài được. Nó bị mất dấu!!
c. (20x^2 + 7x - 6) : (5x - 2)
= (5x - 2) (4x + 3) : (5x - 2)
= 4x + 3.
2.
a. (2x - 5)^2 - 4x (x - 3)= 0
-8x + 25= 0
-8x + 25 - 25= 0 - 25
-8x= -25
-8x : 8= -25 : 8
x = 25/8
Vậy x= 25/8
b. 2(x - 5) - x^2 - 5x= 0
-10x= 0
-10x : (-10)= 0 : (-10)
x= 0
Vậy x= 0
c. Lí do cũng giống câu b bài 1.
\(\Leftrightarrow\left(x+3\right)^2\cdot\left(x-3\right)^2-6\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x^2-9\right)\left(x-3\right)-6\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2-9x+21\right)=0\)
=>x+3=0
hay x=-3
a: \(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{2x+6}{x+3}=2\)
\(A=x^2-4xy+4y^2+2x-4y+1+y^2+2y+1+2008\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\)
\(\Rightarrow A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)
\(x^2-4x+9y^2+6y+10\\ =\left(x^2-4x+4\right)+\left(9y^2+6y+1\right)+5\\ =\left(x-2\right)^2+\left(3y+1\right)^2+5\ge5>0\)
\(1,x=16\Rightarrow A=\dfrac{16-1}{\sqrt{16}}=\dfrac{15}{4}\)
\(2,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\left(dl:x>0,x\ne1\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{x-1}\\ =\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}\\ =\dfrac{4x\sqrt{x}}{x-1}\)
\(3,P=A.B=\dfrac{x-1}{\sqrt{x}}.\dfrac{4x\sqrt{x}}{x-1}=4x\)
\(\sqrt{P}>P\Leftrightarrow\sqrt{4x}>4x\Leftrightarrow\left(\sqrt{4x}\right)^2>\left(4x\right)^2\Leftrightarrow4x>16x^2\Leftrightarrow4x-16x^2>0\Leftrightarrow4x\left(1-4x\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>0\\1-4x>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{x|0< x< \dfrac{1}{4}\right\}\) thì \(\sqrt{P}>P\)
\(4,\left|P\right|>P\Leftrightarrow\left|4x\right|>4x\)
\(TH_1:x\ge0\\4x>4x\Leftrightarrow4x-4x>0\Leftrightarrow0>0\left(VL\right) \)
\(TH_2:x< 0\\ -4x>4x\Leftrightarrow-4x-4x>0\Leftrightarrow-8x>0\Leftrightarrow x< 0\)
Vậy \(x< 0\) thì \(\left|P\right|>P\)
chăm's chỉ's wa'