K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2022

Dễ dàng nhận ra tứ diện OABC là tứ diện đều \(\Rightarrow MA^{2020}+MB^{2020}+MC^{2020}+MO^{2020}\) đạt min khi M trùng trọng tâm tứ diện 

Khi đó \(M\left(2;2;2\right)\Rightarrow MA=MB=MC=MO=\sqrt{2^2+2^2+2^2}=2\sqrt{3}\)

\(\Rightarrow P=4.\left(2\sqrt{3}\right)^{2020}=2^{2022}.3^{1010}\)

13 tháng 4 2022

Thầy ơi thầy giúp em bài này với ạ https://hoc24.vn/cau-hoi/1-limlimits-xrightarrow1dfracx-sqrtx2x-3sqrt3x22-cho-hinh-chop-sabcd-co-day-la-hinh-chu-nhat-ab-a-ad-2a-sa-vuong-goc-voi-day-va-sa-aa-cm-cdperpleftsadright.5799562370088 

Em cảm ơn ạ

24 tháng 4 2022

\(\Delta ABC\) đều cạnh là mấy a ? 

24 tháng 4 2022

Đề không cho ạ

28 tháng 1 2023

\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)

 

We substitute :

\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)

Then, 

\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)

 

Finally,

\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)

 

NV
7 tháng 8 2021

\(y'=3mx^2-4mx-\left(m+1\right)\)

- Với \(m=0\Rightarrow y'=-1< 0\) hàm nghịch biến trên R (thỏa)

- Với \(m\ne0\) hàm nghịch biến trên R khi:

\(\left\{{}\begin{matrix}3m< 0\\\Delta'=4m^2+3m\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\7m^2+3m\le0\\\end{matrix}\right.\) 

\(\Leftrightarrow-\dfrac{3}{7}\le m< 0\)

Vậy \(-\dfrac{3}{7}\le m\le0\Rightarrow m=0\)

S có 1 phần tử

7 tháng 8 2021

Em cảm ơn ạ

AH
Akai Haruma
Giáo viên
27 tháng 6 2021

Bài 5:

\(y=m\sqrt{x^2-4x+7}-(3x-4)=\frac{(m^2-9)x^2+(24-4m^2)x+(7m^2-16)}{m\sqrt{x^2-4x+7}+3x-4}\)

Để đths $y$ có TCN thì:\(\lim\limits_{x\to \pm \infty}y\) hữu hạn

Để điều này xảy ra thì $m^2-9=0\Leftrightarrow m=\pm 3$

Kiểm tra lại thấy cả 2 giá trị này đều thỏa mãn. 

AH
Akai Haruma
Giáo viên
27 tháng 6 2021

Bài 6: Tiệm cận của ĐTHS chứ làm gì có tiệm cận hàm số hả bạn? 

a. 

\(y=\frac{x^2-3x+2}{2x^2+x-1}=\frac{x^2-3x+2}{(2x-1)(x+1)}\)

$(2x-1)(x+1)=0\Leftrightarrow x=\frac{1}{2}$ hoặc $x=-1$

Do đó TCĐ của ĐTHS là $x=\frac{1}{2}$ và $x=-1$

Mặt khác: \(\lim\limits_{x\to \pm \infty}\frac{x^2-3x+2}{2x^2+x-1}=\frac{1}{2}\) nên $y=\frac{1}{2}$ là TCN của ĐTHS.

b.

$x+1=0\Leftrightarrow x=-1$ nên $x=-1$ là TCĐ của đths

$\lim\limits_{x\to \pm \infty}\frac{1-x}{1+x}=-1$ nên $y=-1$ là TCN của đths

 

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

NV
18 tháng 4 2021

Đặt \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow\int\limits^{17}_1f\left(x\right)dx=F\left(17\right)-F\left(1\right)\)

Từ giả thiết:

\(2x.f\left(x^2+1\right)+\dfrac{f\left(\sqrt{x}\right)}{2\sqrt{x}}=2lnx\)

Lấy nguyên hàm 2 vế:

\(F\left(x^2+1\right)+F\left(\sqrt{x}\right)=2xlnx-2x+C\)

Thay \(x=4\):

\(F\left(17\right)+F\left(2\right)=16ln2-8+C\) (1)

Thay \(x=1\):

\(F\left(2\right)+F\left(1\right)=-2+C\) (2)

Trừ vế cho vế (1) cho (2):

\(F\left(17\right)-F\left(1\right)=16ln2-6\)

Vậy \(\int\limits^{17}_1f\left(x\right)dx=16ln2-6\)

19 tháng 4 2021

Em cảm ơn thầy nhiều ạ 💕💕

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với