K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(A=1+4+4^2+....+4^{50}\)

\(A=1\left(1+4\right)+4^2\left(1+4\right)+....+4^{49}\left(1+4\right)\)

\(\Rightarrow A=5\left(1+4^2+...+4^{49}\right)\)

\(\Rightarrow A:20\)dư1

Vì 20\(⋮5\)

VÀ chia cho\(1+4^2+....+4^{99}\)

dư 1 \(\Rightarrow A:20dư1\)

6 tháng 8 2017

Ta có:

\(A=1+4+4^2+...+4^{50}\)

\(\Rightarrow A=1+\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)

\(\Rightarrow A=1+20+4^2.\left(4+4^2\right)+...+4^{48}.\left(4+4^2\right)\)

\(\Rightarrow A=1+20+4^2.20+...+4^{48}.20\)

\(\Rightarrow A=1+20.\left(1+4^2+...+4^{48}\right)\)

Vì \(20⋮20\Rightarrow20.\left(1+4^2+...+4^{48}\right)⋮20\)

\(\Rightarrow A:20\)dư 1

Vậy \(A:20\)dư 1