K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021
1234567891011121314
NV
19 tháng 12 2020

Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số

(Đây là loại hoán vị lặp)

 

19 tháng 12 2020

Cảm bạn

NV
13 tháng 12 2020

Chữ số hàng đơn vị có 5 cách chọn

Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại

Số số thỏa mãn: \(5.A_8^2=...\)

15 tháng 9 2019

25 tháng 8 2017

Đáp án A

Thêm vào hai chữ số 1 vào tập hợp các chữ số đã cho ta được tập 0QIuYYiCOFog.png

Xem các số 1 là khác nhau thì mỗi hoán vị của 6 phần tử của E cho ta một số có 6 chữ số thỏa mãn bài toán. Như vậy ta có 6! số. Tuy nhiên khi hoán vị vủa ba số 1 cho nhau thì giá trị con số không thay đổi nên mỗi số như vậy ta đếm chúng đến 3! lần. 

Vậy số các số thỏa mãn yêu cầu bài toán là mA0nlpoPSok5.pngsố.

Chú ý: Ta có thể giải như sau, ta gọi số 6 chữ số cần tìm là CI7KbcSMJaMZ.png, chọn 3 vị trí trong 6 vị trí để đặt ba chữ số 1 có mB8tL7z1uf3L.pngcách, xếp 3 chữ số 2,3,4 vào ba vị trí còn lại có 3! cách do đó jQ4aLylI0RZS.png

2 tháng 9 2017

Xếp số vào 8 ô trống thỏa yêu cầu đề bài.

Bước 1: Chọn 3 ô trong 8 ô để xếp 3 chữ số 1, có  cách.

Bước 2: Chọn 2 ô trong 5 ô còn lại để xếp 2 chữ số 4, có  cách.

Bước 3: Xếp 3 chữ số số còn lại vào 3 ô còn lại, có 3! cách.

Vậy có  số thỏa yêu cầu, nhưng có những số có chữ số 0 đứng vị trí đầu tiên.

Trường hợp số 0 ở ô thứ nhất.

Bước 1: Chọn 3 ô trong 7 ô còn lại, xếp 3 chữ số 1, có  cách.

Bước 2: Chọn 2 ô trong 4 ô còn lại, xếp 2 chữ số 4, có  cách.

Bước 3: Xếp hai chữ số còn lại vào 2 ô còn lại, có 2! cách.

Vậy có:  số mà chữ số 0 ở vị trí đầu tiên.

Kết luận có:  số thỏa yêu cầu.

Chọn C.

10 tháng 3 2021

Chọn 4 chữ số còn lại : \(C^4_6\)

Số số cần tìm : \(\dfrac{C^4_6\cdot7!}{3!}\)

14 tháng 1 2022

Gọi abc là stn có ba chữ số khác nhau cần tìm

TH1: c = {0} -> 1cc                                                       TH2: c = {2;4;6} -> 3cc

a \ {c} -> 6cc                                                                    a \ {0;c) -> 5cc

b \ {a;c} -> 5cc                                                                 b \ {a;c} -> 5cc

<=>(6*5)+(3*5*5)=105 số