Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Thấy : \(\dfrac{1}{1}\ne\dfrac{3}{12}\)
=> Hai đường thẳng cắt nhau tại 1 điểm .
a, - Ta có : Hai đường thẳng cắt nhau tại điểm bên trái trục tung .
=> x < 0
- Xét phương trình hoành độ giao điểm :\(12x+5-m=3x+3+m\)
\(\Leftrightarrow x=\dfrac{2m-2}{9}< 0\)
\(\Rightarrow m< 1\)
Vậy ...
b, - Hai đường thẳng cắt nhau tại điểm trong góc phần tư thứ 2 .
\(\Rightarrow\left\{{}\begin{matrix}y>0\\x< 0\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}y=12x+5-m\\4y=4\left(3x+3+m\right)=12x+12+4m\end{matrix}\right.\)
\(\Rightarrow3y=12x+12+4m-12x-5+m=5m+7>0\)
\(\Rightarrow m>-\dfrac{7}{5}\)
Mà \(m< 1\)
\(\Rightarrow-\dfrac{7}{5}< m< 1\)
Vậy ...
Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Áp dụng BDT Co-si, ta có:
\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12
=> A \(\ge15\)
Dấu "=" xảy ra <=> x = 81
`5)A=sqrtx+36/(sqrtx-3)`
`A=sqrtx-3+36/(sqrtx-3)+3`
ÁP dụng bđt cosi ta có:
`sqrtx-3+36/(sqrtx-3)>=2sqrt{36}=12`
`=>A>=12+3=15`
Dấu "=" xảy ra khi `sqrtx-3=36/(sqrtx-3)`
`<=>(sqrtx-3)^2=36`
`<=>sqrtx-3=6`
`<=>sqrtx=9`
`<=>x=81`
Không có Max.
\(A=\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Theo BĐT Cô Si ta có:
\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\sqrt{x}-3.\dfrac{36}{\sqrt{x}-3}}\)
⇔\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge12\)
⇔\(A\ge12+3\)
⇔\(A\ge15\)
⇒\(Min_A=15\)
Dấu = xảy ra khi và chỉ khi : \(\sqrt{x}-3=\dfrac{36}{\sqrt{x}-3}\)
⇔\(\left(\sqrt{x}-3\right)^2=36\)
⇔\(\sqrt{x}-3=6\)
⇔\(\sqrt{x}=9\)
⇔\(x=81\)
7:
a: góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB tại D và BE vuông góc AC tại E
góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
Xét ΔAEB vuông tại Evà ΔADC vuông tại D có
góc EAB chung
=>ΔAEB đồng dạng với ΔADC
=>AE/AD=AB/AC
=>AE*AC=AB*AD
b: ΔBEC vuông tại E có EO là trung tuyến
nên OB=OE
=>góc BOE=2*góc ACB
Xét ΔABC có CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC tại K
góc ADE=góc ACB
góc ADC=góc AKC=90 độ
=>ADKC nội tiếp
=>góc KDA+góc KCA=180 độ
=>góc BDK=góc KCA
=>góc EDK=180 độ-2*góc BCA
=>góc EDK+góc EOK=180 độ
=>EDKO nội tiếp
Đề 1:
Bài 1:
\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)
Bài 2:
\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)
Bài 3:
\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)
\(MA^4+MB^4+MC^4+MD^4\)
\(=\left(MA^2+MC^2\right)^2+\left(MB^2+MD^2\right)^2-2MA^2.MC^2-2MB^2.MD^2\)
\(=32R^4-8S_{MAC}^2-8S_{MBD}^2\)
\(=32R^4-8R^2\left(MH^2+MK^2\right)\) với H,K lần lượt là hình chiếu vuông góc của M trên AC,BD
\(=32R^4-8R^2.R^2=24R^4\)
17 nha