K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

11.

\(=\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)

\(=\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)

\(=\frac{x-9}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)

\(=\frac{\sqrt{x}-2}{3+\sqrt{x}}\)

 

 

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

12.

\(=\frac{(3-\sqrt{x})(3\sqrt{x}-2)+(5\sqrt{x}+7)(3\sqrt{x}+4)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\) 

\(=\frac{12x+52\sqrt{x}+22}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\)

\(=\frac{12x+10\sqrt{x}-12}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(3\sqrt{x}-2)(2\sqrt{x}+3)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(2\sqrt{x}+3)}{5\sqrt{x}+7}\)

 

 

Bài 14:

a)

Sửa đề: \(AE\cdot AB=AD\cdot AC\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADB vuông tại D có 

\(\cos\widehat{A}=\dfrac{AD}{AB}\)

Xét ΔAED và ΔACB có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔACB(c-g-c)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{ED}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}\cdot BC=DE\)

\(\Leftrightarrow DE=BC\cdot\cos\widehat{A}\)(đpcm)

c) Ta có: \(DE=BC\cdot\cos\widehat{A}\)(cmt)

nên \(DE=BC\cdot\cos60^0=\dfrac{1}{2}BC\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(EM=\dfrac{1}{2}BC\)(2)

Ta có: ΔDBC vuông tại D(gt)

mà DM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(DM=\dfrac{1}{2}BC\)(3)

Từ (1), (2) và (3) suy ra ME=MD=DE

hay ΔMDE đều(đpcm)

1 tháng 7 2021

Dạ em cảm ơn ạ!

NV
27 tháng 7 2021

14.

\(\dfrac{1-cosa}{sina}=\dfrac{sina\left(1-cosa\right)}{sin^2a}=\dfrac{sina\left(1-cosa\right)}{1-cos^2a}=\dfrac{sin\left(1-cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\dfrac{sina}{1+cosa}\)

Câu b đề bài sai, đẳng thức đúng phải là:  \(1+tan^2a=\dfrac{1}{cos^2a}\)

\(1+tan^2a=1+\dfrac{sin^2a}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=\dfrac{1}{cos^2a}\)

\(tan^2a-sin^2a=\dfrac{sin^2a}{cos^2a}-sin^2a=\dfrac{sin^2a}{cos^2a}\left(1-cos^2a\right)=\dfrac{sin^2a}{cos^2a}.sin^2a=tan^2a.sin^2a\)

\(\dfrac{sin^4a-cos^4a}{sina+cosa}=\dfrac{\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)}{sina+cosa}=\dfrac{sin^2a-cos^2a}{sina+cosa}=\dfrac{\left(sina+cosa\right)\left(sina-cosa\right)}{sina+cosa}\)

\(=sina-cosa\)

NV
27 tháng 7 2021

13.

b. Chia cả tử và mẫu cho sinB:

\(N=\dfrac{\dfrac{4cosB}{sinB}+\dfrac{2sinB}{sinB}}{\dfrac{cossB}{sinB}-\dfrac{3sinB}{sinB}}=\dfrac{4cotB+2}{cotB-3}=\dfrac{4.\dfrac{3}{2}+2}{\dfrac{3}{2}-3}=-\dfrac{16}{3}\)

c. Chia cả tử và mẫu cho \(cos^3B\)

\(M=\dfrac{\dfrac{sin^3B}{cos^3B}-\dfrac{cos^3B}{cos^3B}}{\dfrac{sin^3B}{cos^3B}+\dfrac{cos^3B}{cos^3B}}=\dfrac{tan^3B-1}{tan^3B+1}=\dfrac{3^3-1}{3^3+1}=\dfrac{13}{14}\)

Bài 15:

a) Ta có: \(A=\cos^252^0\cdot\sin45^0+\sin^252^0\cdot\cos45^0\)

\(=\dfrac{\sqrt{2}}{2}\left(\sin^252^0+\cos^252^0\right)\)

\(=\dfrac{\sqrt{2}}{2}\)

b) Ta có: \(B=\tan60^0\cdot\cos^247^0+\sin^247^0\cdot\cot30^0\)

\(=\sqrt{3}\cdot\left(\sin^247^0+\cos^247^0\right)\)

\(=\sqrt{3}\)

Bài 17:

c) Ta có: \(C=\tan1^0\cdot\tan2^0\cdot\tan3^0\cdot\tan4^0\cdot...\cdot\tan89^0\)

\(=\left(\tan1^0\cdot\tan89^0\right)\cdot\left(\tan2^0\cdot\tan88^0\right)\cdot...\cdot\tan45^0\)

\(=1\cdot1\cdot...\cdot1=1\)

7 tháng 1 2022

post vừa rồi bị lỗi ảnh nên em post lại ạ ...

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

ĐKXĐ: x>=0; x<>9

\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

6 tháng 3 2022

lỗi

6 tháng 3 2022

đăng lại đi

22 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

   `=>(m+1)^2-m^2+2m-3 > 0`

`<=>m^2+2m+1-m^2+2m-3 > 0`

`<=>m > 1/2`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`

Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`

`=>1-4x_1.x_2+3(x_1.x_2)^2=0`

`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`

`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`

`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`

  `=>` Không có `m` thỏa mãn.

Bài 2:

a: \(\text{Δ}=\left(-2\right)^2-4\left(m-3\right)=4-4m+12=-4m+16\)

Để pt vô nghiệm thì -4m+16<0

=>m>4

Để phương trình co nghiệmduy nhất thì -4m+16=0

=>m=4

Để phương trình có hai nghiệm phân biệt thì -4m+16>0

=>m<4

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-m+1\right)\)

\(=4m^2-8m+4-4m^2+4m-4=-4m\)

Để pt vô nghiệm thì -4m<0

=>m>0

Để phương trình co nghiệmduy nhất thì -4m=0

=>m=0

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

c: \(\Delta=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để pt vô nghiệm thì m^2-4<0

=>-2<m<2

Để phương trình co nghiệmduy nhất thì m^2-4=0

=>m=2 hoặc m=-2

Để phương trình có hai nghiệm phân biệt thì m^2-4>0

=>m>2 hoặc m<-2