K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

Đề yêu cầu gì bạn?

NV
21 tháng 4 2021

e.

\(y'=2sinx.\left(sinx\right)'=2sinx.cosx=sin2x\)

f.

\(y'=4sin^3x.\left(sinx\right)'+4cos^3x.\left(cosx\right)'=4sin^3x.cosx-4cos^3x.sinx\)

\(=4sinx.cosx\left(sin^2x-cos^2x\right)=2sin2x.\left(-cos2x\right)=-sin4x\)

NV
25 tháng 7 2021

1.

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\dfrac{\pi}{4}=k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

2.

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
25 tháng 7 2021

3.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\dfrac{5}{8}\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x=\dfrac{5}{8}\)

\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{5}{8}\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{2\pi}{3}+k2\pi\\4x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\end{matrix}\right.\)

25 tháng 9 2021

\(2cos^2x-4sinxcosx=0\) 

\(\left\{{}\begin{matrix}cosx=0\\cosx-2sinx=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\cos\left(\alpha+x\right)=0vớicos\alpha=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

4 tháng 7 2021

ĐK: `x \ne kπ`

`cot(x-π/4)+cot(π/2-x)=0`

`<=>cot(x-π/4)=-cot(π/2-x)`

`<=>cot(x-π/4)=cot(x-π/2)`

`<=> x-π/4=x-π/2+kπ`

`<=>0x=-π/4+kπ` (VN)

Vậy PTVN.

1 tháng 8 2021

hahihihihi

NV
23 tháng 3 2022

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)

\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)

23 tháng 3 2022

em cảm ơn ạ

NV
9 tháng 3 2022

\(\lim\dfrac{3^n+2.6^n}{6^{n-1}+5.4^n}=\lim\dfrac{6^n\left[\left(\dfrac{3}{6}\right)^n+2\right]}{6^n\left[\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n\right]}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n+2}{\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n}=\dfrac{0+2}{\dfrac{1}{6}+0}=12\)

\(\lim\left(\sqrt{n^2+9}-n\right)=\lim\dfrac{\left(\sqrt{n^2+9}-n\right)\left(\sqrt{n^2+9}+n\right)}{\sqrt{n^2+9}+n}=\lim\dfrac{9}{\sqrt{n^2+9}+n}\)

\(=\lim\dfrac{n\left(\dfrac{9}{n}\right)}{n\left(\sqrt{1+\dfrac{9}{n^2}}+1\right)}=\lim\dfrac{\dfrac{9}{n}}{\sqrt{1+\dfrac{9}{n^2}}+1}=\dfrac{0}{1+1}=0\)

\(\lim\dfrac{\sqrt{15+9n^2}-3}{5-n}=\lim\dfrac{n\sqrt{\dfrac{15}{n^2}+9}-3}{5-n}=\lim\dfrac{n\left(\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}\right)}{n\left(\dfrac{5}{n}-1\right)}\)

\(=\lim\dfrac{\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}}{\dfrac{5}{n}-1}=\dfrac{\sqrt{9}-0}{0-1}=-3\)

11 tháng 3 2022

em cảm ơn ạ

27 tháng 6 2021

TXĐ: `D=RR\\{π/2+kπ ; -π/4 +kπ}`

Mà `-π/2+k2π` và `π/2+k2π \in π/2 +kπ`

`=>` Không nằm trong TXĐ.

NV
14 tháng 7 2021

2.

\(\Leftrightarrow cos2x-cos8x-sin3x+cos5x-2sin5x.cos5x=0\)

\(\Leftrightarrow2sin5x.sin3x-sin3x+cos5x-2sin5x.cos5x=0\)

\(\Leftrightarrow sin3x\left(2sin5x-1\right)-cos5x\left(2sin5x-1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos5x\right)\left(2sin5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos5x=sin3x=cos\left(\dfrac{\pi}{2}-3x\right)\\sin5x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{2}-3x+k2\pi\\5x=3x-\dfrac{\pi}{2}+k2\pi\\5x=\dfrac{\pi}{6}+k2\pi\\5x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

NV
14 tháng 7 2021

3.

\(\Leftrightarrow1+sinx=cosx-cos3x+2sinx.cosx+1-2sin^2x\)

\(\Leftrightarrow sinx=2sin2x.sinx+2sinx.cosx-2sin^2x\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\1=2sin2x+2cosx-2sinx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4sinx.cosx+2cosx-2sinx-1=0\)

\(\Leftrightarrow2cosx\left(2sinx+1\right)-\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2cosx+1\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)