K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

đây này:

a(b-c)2+b(c-a)2+c(a-b)2-a3-b3-c3+4abc

17 tháng 7 2016

Cmr

\(a^3+b^3+c^3=3abc\Leftrightarrow a+b+c=0\)

Cần đáp án ko

oaoa

18 tháng 7 2016

bài 1: (A+B)3=A3+3A2B+3AB2+B3 (1)

          A3+B3=(A+B)(A2+AB+B2) (2)

Tính A3+B3+C3=?

18 tháng 7 2016

Bài 2: tính giá trị biểu thức

M= yz/x2 + xz/y2 +xy/z2 với xy+yz+xz=0 và xyz \(^{_{ }\ne}\) 0

11 tháng 6 2017

Ta có:
   a3 + b3 + c3 - 3abc
= (a + b)3 + c3 - 3ab(a + b) - 3abc
= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)
= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]
= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ac - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 3abc - 3abc = 0
=> a + b + c = 0      hay     a2 + b2 + c2 - ab - bc - ac = 0
                                I  => 2(a2 + b2 + c2 - ab - bc - ac) = 0
                                I  => 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
                                I  => (a - b)2 + (b - c)2 + (a - c)2 = 0
                                I  => a - b = 0   hay   b - c = 0   hay   a - c = 0
                                I  => a      = b  I =>  b       = c    I =>  a      = c
                                I  => a = b = c

11 tháng 6 2017

a + b + c = 0 => a + b = -c

=>(a + b)3 = (-c)3

=>a3 + b3 +3a2b + 3ab2 = (-c)3

=>a3 + b3 + c3 +3ab(a + b) = 0

=>a3 + b3 + c= 3abc

22 tháng 10 2018

a/ \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)

\(a+b+c=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

22 tháng 10 2018

còn câu b thì sao bn, giúp nhanh nhanh mk vs

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

14 tháng 2 2018

A B E F C D O I

27 tháng 8 2018

\(a^3+b^3+c^3=3abc\) 

<=>   \(a^3+b^3+c^3-3abc=0\)

<=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>    \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

  Xét:     \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>    \(2a^{ 2}+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>    \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\) <=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)<=>   \(a=b=c\)

=>  đpcm

18 tháng 6 2016

Từ \(a+b+c=0\Rightarrow a+b=-c\)

Xét hiệu \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

                                                     \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\left(I\right)\)

  Thay \(a+b=-c;a+b+c=0\left(GT\right)v\text{ào}\left(I\right)\) ta được 

\(a^3+b^3+c^3-3abc=\left(-c\right)^3+c^3-3ab.0\)

                                         \(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(\text{Đ}PCM\right)\)

Vậy \(a^3+b^3+c^3=3abc\) với \(a+c+b=0\)