K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

Một nghìn không trăm hai mươi chín phẩy bốn trăm tám mươi sáu tỷ đồng

30 tháng 4 2023

một nghìn không trăm hai mươi chín phẩy bốn trăm tám mươi sáu tỷ đồng

NV
1 tháng 6 2021

Đặt \(x=1-t\Rightarrow y=f\left(1-t\right)\Rightarrow y'=-f'\left(1-t\right)\) trái dấu với \(f'\left(1-t\right)\)

Từ đồ thị ta thấy \(f'\left(1-t\right)\) âm khi \(\left[{}\begin{matrix}t< 0\\1< t< 2\end{matrix}\right.\) hay \(y'\) dương khi \(\left[{}\begin{matrix}t< 0\\1< t< 2\end{matrix}\right.\)

Hay \(\left[{}\begin{matrix}1-x< 0\\1< 1-x< 2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\)

NV
23 tháng 5 2021

Đề bài liệu có chính xác không nhỉ? Mình chỉ có thể tìm được max bằng \(2\sqrt{2}\) (xảy ra khi \(lnx=\sqrt{2}\) và \(lny=\dfrac{1}{2}\)) và ko thể tìm được min.

NV
23 tháng 5 2021

À rồi OK, suy nghĩ hơi cồng kềnh 1 xíu nên hướng tìm min bị sai:

Giả thiết tương đương: \(y^{\sqrt{4-ln^2x}}=x^{1-lny}\)

\(\Rightarrow\sqrt{4-ln^2x}.lny=\left(1-lny\right)lnx\) (1)

Do \(y\ne1\Rightarrow lny\ne0\)

Nên (1) tương đương: \(\sqrt{4-ln^2x}=\left(\dfrac{1-lny}{lny}\right)lnx\) (2)

Đặt \(\left\{{}\begin{matrix}lnx=a\\lny=b\end{matrix}\right.\) thì \(log_yx=\dfrac{a}{b}\)

(2) trở thành: \(\sqrt{4-a^2}=\left(\dfrac{1-b}{b}\right)a\)

\(\Rightarrow\sqrt{4-a^2}=\dfrac{a}{b}-a\Rightarrow\dfrac{a}{b}=\sqrt{4-a^2}+a\)

Xét hàm \(f\left(a\right)=\sqrt{4-a^2}+a\) trên \(\left[-2;2\right]\)

\(f'\left(a\right)=1-\dfrac{a}{\sqrt{4-a^2}}=0\Rightarrow a=\sqrt{2}\)

\(f\left(-2\right)=-2\) ; \(f\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(f\left(2\right)=2\)

\(\Rightarrow f\left(a\right)_{min}=-2\) ; \(f\left(a\right)_{max}=2\sqrt{2}\)

Đáp án B

3 tháng 10 2023

Đây là công thức bạn phải thuộc lòng, còn b là số lớn 0 và khác 1, tùy vào bài tập bạn giải sẽ có số b hợp lý.

3 tháng 10 2023

ví dụ log12 18= log2 18/log2 12. vậy thì số 2 này từ đâu mà có vậy ạ?