K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAB và ΔMEC co

MA=ME

góc AMB=góc EMC

MB=MC

Do đó: ΔMAB=ΔMEC

b: ΔMAB=ΔMEC

=>góc MAB=góc MEC

=>AB//CE

c: AB//CE

AB vuông góc với CA

Do đo: CA vuông góc với CE

Xét tứ giác ABEC có

M làtrung điểm chung của AE và BC

góc BAC=90 độ

Do đó: ABEC là hình chữ nhật

=>ΔBEC vuông tại E

8 tháng 10 2021

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

   \(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)

   \(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

8 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

2 tháng 3 2022

2 tháng 3 2022

8 tháng 10 2021

a/b = c/d

--> a/c = b/d

--> 3a/3c = 4b/4d = (3a-4b)/(3c-4d) 

2a/2c=5b/5d=(2a+5b)/(2c+5d)

--> (3a-4b)/(3c-4d)=(2a+5b)/(2c+5d)

--> (2a+5b)/(3a-4b)=(2c+5d)/(3c-4d)

8 tháng 10 2021

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\\ \Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\\ \Leftrightarrow12a=10b\\ \Leftrightarrow6a=5b\Leftrightarrow\dfrac{a}{b}=\dfrac{5}{6}\)

31 tháng 10 2021

a: \(P=-\left|5-x\right|+2019\le2019\forall x\)

Dấu '=' xảy ra khi x=5

31 tháng 10 2021

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

8 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Bài 2: 

a: Xét ΔACM và ΔNBM có 

MA=MN

\(\widehat{AMC}=\widehat{NMB}\)

MC=MB

Do đó: ΔACM=ΔNBM

b: Xét ΔAMB và ΔNMC có 

MA=MN

\(\widehat{AMB}=\widehat{NMC}\)

MB=MC

Do đó: ΔAMB=ΔNMC

Suy ra: AB=CN