Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. xét tam giác ABC và tam giác BHC có:
góc B = góc C = 90o
góc C chung
=> tam giác ABC ~ tam giác BHC (g.g)
Áp dụng định lí Pytago vào tam giác ABC, ta có:
AB2+BC2=AC2
36 + 64= AC2
AC2= 100
AC= 10 (cm)
vì tam giác ABC ~ tam giác BHC
=> \(\dfrac{AB}{BH}\)= \(\dfrac{AC}{BC}\)
=> BH = \(\dfrac{AB.BC}{AC}\)
=> BH= \(\dfrac{6.8}{10}\)= 4,8 (cm)
gọi số học sinh mua vở dự kiến là x
số học sinh mua vở trong quá trình thực hiện là x - 15
Theo đề ta có:
5x + 691= 6(x-15)
5x + 691= 6x - 90
5x - 6x = -90 - 691
-x= -781
x= 781
vậy trường có 781 học sinh.
a.\(ĐK:x\ne\pm1;x\ne-\dfrac{1}{2}\)
\(P=\left(\dfrac{x}{x+1}-\dfrac{x+1}{x-1}+\dfrac{7x-3}{x^2-1}\right):\dfrac{4}{2x+1}\)
\(P=\left(\dfrac{x\left(x-1\right)-\left(x+1\right)\left(x+1\right)+7x-3}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{4}{2x+1}\)
\(P=\dfrac{x^2-x-x^2-2x-1+7x-3}{\left(x-1\right)\left(x+1\right)}.\dfrac{2x+1}{4}\)
\(P=\dfrac{\left(4x-4\right)\left(2x+1\right)}{4\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{4\left(x-1\right)\left(2x+1\right)}{4\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{2x+1}{x+1}\)
b.\(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\) ( vì \(x\ne-\dfrac{1}{2}\) )
\(x=0\Leftrightarrow P=\dfrac{2.0+1}{0+1}=\dfrac{1}{1}=1\)
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
Diện tích là:
\(\left(32-12\right):2\cdot\left(32+12\right):2=220\left(m^2\right)\)
Bài giải
Nửa chu vi mảnh vườn đó là :
64 : 2 = 32 ( m )
Chiều dài mảnh vườn đó là :
(32 + 12) : 2 = 22 ( m )
Chiều rộng mảnh vườn đó là :
32 - 22 = 10 ( m )
Diện tích mảnh vườn đó là :
22 x 10 = 220 ( \(m^2\))
Đáp số : 220 \(m^2\)
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Sửa đề x^7 chuyển thành x^8
Ta có
\(x^8+x+1=x^8-x^2+x^2+x+1\)
\(=x^2[\left(x^3\right)^2-1]+x^2+x+1\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+1\right)\)
Ta có AM,DN lần lượt là phân giác \(\Delta ABD,\Delta ADC\)
\(\Rightarrow\dfrac{MD}{MB}=\dfrac{AD}{AB};\dfrac{NA}{NC}=\dfrac{AD}{DC}\)
Mà \(AB=CD\left(gt\right)\\ \Rightarrow\dfrac{MD}{MB}=\dfrac{NA}{NC}\Rightarrow\dfrac{MD+AB}{MB}=\dfrac{NA+NC}{NC}\\ \Rightarrow\dfrac{BD}{MB}=\dfrac{CA}{NC}\)
Theo đlí Talet đảo ta được MN//BC
a: Xét ΔBHA vuông tại H và ΔBFC vuông tại F có
\(\widehat{HBA}=\widehat{FBC}\)
Do đó: ΔBHA~ΔBFC
=>\(\dfrac{BH}{BF}=\dfrac{BA}{BC}\)
=>\(BH\cdot BC=BA\cdot BF\)
Xét ΔBAC có BE là phân giác
nên \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{8}{5}\)