Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện:
\(2\left(x-1\right)-3\left(2x+1\right)\ne0\)
\(\Leftrightarrow2x-2-6x-3\ne0\)
\(\Leftrightarrow-4x-5\ne\)
\(\Leftrightarrow-4x\ne5\)
\(\Leftrightarrow x\ne-\frac{5}{4}\)
\(\frac{3x+2}{2\left(x-1\right)-3\left(2x-1\right)}\)
Để giá trị của phương trình được xác định
\(2\left(x-1\right)-3\left(2x+1\right)=0\)
\(\Leftrightarrow\)\(2x-2-6x-3=0\)
\(\Leftrightarrow\)\(-4x-5=0\)
\(\Leftrightarrow\)\(-4x=5\)
\(\Leftrightarrow\)\(x=\frac{-5}{4}\)
Vậy \(x\ne\frac{-5}{4}\)để phương trình được xác định
a, ĐKXĐ : \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)hoặc \(2x^2-x^3\ne0\)hay \(x\ne\pm2;0\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left(-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(=\frac{-x^2-2x-1-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)
\(=\frac{-4x^2-6x+3}{\left(x-2\right)\left(x+2\right)}.\frac{-x\left(x-2\right)}{x-3}=\frac{\left(-4x^2-6x+3\right)\left(-x\right)}{\left(x+2\right)\left(x-3\right)}=\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}\)
b, Ta có : A > 0 hay \(\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}>0\)
\(\Leftrightarrow x\left(4x^2+6x-3\right)>0\)
\(\Leftrightarrow4x^2+6x-3>0\) bạn xem lại bài mình có chỗ nào sai ko nhé !!!
c, Ta có : \(\left|x-7\right|=4\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
TH1 : Thay x = 11 vào phân thức trên : ...
TH2 : Thay x = 3 vào phân thức trên : .... tự làm
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)
b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{x+4}{6}\)
c) Để P = 0
\(\Leftrightarrow\frac{x+4}{6}=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Để P = 1
\(\Leftrightarrow\frac{x+4}{6}=1\)
\(\Leftrightarrow x+4=6\)
\(\Leftrightarrow x=2\)
d) Để P > 0
\(\Leftrightarrow\frac{x+4}{6}>0\)
\(\Leftrightarrow x+4>0\)(Vì 6>0)
\(\Leftrightarrow x>-4\)
Đáp án :
1- C
2-A
3-B
4-D
5-
6-D
7-A
8-B
9-
10-D
11-
12-B
13-B
14-C
15-
16-D
17-
18-D
19-D
20-D
Câu 1:Trong các pt sau đây, pt nào là pt bậc nhất một ẩn
A.x-1=x+2 B.(x-1)(x+2)=0 C.ax+b=0 D.2x+1=3x+5
Câu2: x=-2 là nghiệm của pt nào ?
A.3x-1=x-5 B.2x-1=x+3 C.x-3=x-2 D.3x+5=-x-2
Câu 3: x-4 là nghiệm của pt
A.3x-1=x-5 B.2x-1=x+3 C.x-3=x-2 D.3x+5=-x-2
Câu 4: Pt x+9=9+x có nghiệm là
A.S=R B.S=9 C.S rỗng D. S thuộc R
Câu 5: cho 2pt: x(x-1)=0(1) và 3x-3=0 (2)
A.(1) tương đương (2) B.(1) là hệ quả của pt (2)
C.(2) là hệ quả của pt (1) D. Cả 3 sai
Câu 6: Pt x2=-4 có nghiệm là
A. Một nghiệm x=2 B. Có hai nghiệm x=-2;x=2
C.Mộe nghiệm x=-2 D. Vô nghiệm
Câu 7: Chọn kết quả đúng
A. x2=3x <=> x(x-3) =0 B.(x−1)2−25= 0 <=> x=6
C. x2 =9 <=> x=3 D.x2 =36<=> x=-6
Câu 8: Cho biết 2x-4=0. Tính 3x-4=
A. 0 B. 2 C. 17 D. 11
Câu 9: Pt (2x-3)(3x-2)=6x(x-50)+44 có tập nghiệm
A. S={2} B. S={2;−3} C. S={2;13} D. S={2;0;3}
Câu 10: Pt 3x-5x+5=-8 có nghiệm là
A. x=-23 B. x=23 C. x=4 D. Kết quả khác
Câu 11: Giá trị của b để pt 3x+6=0 có nghiệm là x=-2
A.4 B. 5 C. 6 D. Kết quả khác
Câu 12: Pt 2x+k=x-1 nhận x=2 là nghiệm khi
A. k=3 B. k=-3 C. k=0 D.k=1
Câu 13: Pt m(x-1)=5-(m-1)x vô nghiệm nếu
A. m=14 B. m=12 C.m=34 D. m=1
Câu 14: Pt x2 -4x+3=0 có nghiệm là
A. {1;2} B. {2;3} C. {1;3} D. {2;4}
Câu 15: Pt x2 -4x+4=9(x−2)2 có nghiệm là
A. {2} B. {−2;2} C. {−2} D. Kết quả khác
Câu 16: Pt 1x+2+3=3−xx−2 có nghiệm
A.1 B. 2 C. 3 D. Vô nghiệm
Câu 17: Pt x+2x−2−2x(x−2)=1x có nghiệm là
A. {−1} B. {−1;3} C. {−1;4} D. S=R
Câu 18: Pt x2(x−3)+x2(x+1)=2x(x+1)(x+3) có nghiệm là
A. -1 B. 1 C. 2 D. Kết quả khác
Câu 19: Pt x2+2xx2+1−2x=0 có nghiệm là
A. -2 B.3 C. -2 và 3 D. kết quả khác
Câu 20: ĐKXĐ của Pt 3x+2x+2+2x−11x2−4−32−x là
A. x−23; x≠112 B. x≠2 C. x>0 D. x≠ 2 và x≠ -2
a.\(ĐKXĐ:\hept{\begin{cases}x^2-2x\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x-2\right)\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-1\end{cases}}}\)
b.\(M=\left(\frac{1}{x^2-2x}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\frac{2x+1}{x\left(x-2\right)}\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\frac{2x+1}{x\left(x-2\right)}.\frac{x\left(x+1\right)}{2x+1}=\frac{x\left(2x+1\right)\left(x+1\right)}{x\left(x-2\right)\left(2x+1\right)}=\frac{x+1}{x-2}\)
c.Để \(M>1\)thì
\(\frac{x+1}{x-2}>1\)
c, Ta có : \(M>1\Rightarrow\frac{x+1}{x-2}>1\Leftrightarrow\frac{x+1}{x-2}-1>0\)
\(\Leftrightarrow\frac{x+1-x+2}{x-2}>0\Leftrightarrow\frac{3}{x-2}>0\)
\(\Rightarrow x-2>0\Leftrightarrow x>2\)vì 3 > 0
d, Để M nguyên khi \(x+1⋮x-2\Leftrightarrow x-2+3⋮x-2\)ĐK : \(x\ne2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
Bài làm:
a) \(đkxd:x\ne2;x\ne-2;x\ne0;x\ne3\)
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(A=\left(\frac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x-3}{x\left(2-x\right)}\)
\(A=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x^2}{x-3}\)
b) Ta có: \(4x^2>0\left(\forall x\ne0\right)\)
=> Để A>0 thì \(x-3>0\)
\(\Rightarrow x>3\)
Vậy với \(x>3\)thì A>0
c) Ta có: \(\left|x-7\right|=4\)\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=3\end{cases}}\)
Mà theo điều kiện xác định, \(x\ne3\)
\(\Rightarrow x=11\)
Khi đó, \(A=\frac{4.11^2}{11-3}=\frac{121}{2}\)
Vậy \(A=\frac{121}{2}\)
Học tốt!!!!
Bổ sung phần c và d luôn:
c, C = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)
\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6
\(\Leftrightarrow\) x2 = 11
\(\Leftrightarrow\) x2 - 11 = 0
\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)
d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)
C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))
\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)) \(\in\) Ư(5)
Xét các TH:
4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)
Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z
Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)
Bài 1:
a) ĐKXĐ: \(9x^2-6x+1\neq 0\)
\(\Leftrightarrow (3x-1)^2\neq 0\Leftrightarrow x\neq \frac{1}{3}\)
b) Với \(x=-8\Rightarrow C=\frac{3(-8)^2-(-8)}{9(-8)^2-6(-8)+1}=\frac{8}{25}\)
c) Ta có:
\(C=\frac{3x^2-x}{9x^2-6x+1}=\frac{x(3x-1)}{(3x-1)^2}=\frac{x}{3x-1}\)
d)
Phân thức đã cho nhận giá trị âm \(\Leftrightarrow \) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\3x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\3x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x>0\\ x< \frac{1}{3}\end{matrix}\right.\)
Bài 2:
a) ĐKXĐ: \((x+1)(2x-6)\neq 0\)
\(\Leftrightarrow \left\{\begin{matrix} x+1\neq 0\\ 2x-6\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -1\\ x\neq 3\end{matrix}\right.\)
b) Ta có:
\(\frac{3x^2+3x}{(x+1)(2x-6)}=1\)
\(\Leftrightarrow \frac{3x(x+1)}{(x+1)(2x-6)}=1\)
\(\Leftrightarrow \frac{3x}{2x-6}=1\Leftrightarrow 3x=2x-6\Leftrightarrow x=-6\)
c) Để phân thức đã cho nhận giá trị dương thì:
\(\frac{3x}{2x-6}>0\Leftrightarrow \frac{x}{x-3}>0\)
\(\Leftrightarrow \)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
Vậy để pt nhận giá trị dương thì \(x\neq -1; x\neq 3\) và \(x>3\) hoặc \(x<0\)