K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2022
Ai giúp em với😢

a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng K qua BC

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

CH=CK

BC chung

=>ΔBHC=ΔBKC

=>góc BKC=góc BHC

=>góc BKC+góc BAC=180 độ

=>ABKC nội tiếp

b: Gọi Ax là tiếp tuyến của (O) tại A

=>góc xAC=góc ABC=góc AEF

=>EF//Ax

=>EF vuông góc OA

c: Xét tứ giác BHCA' có

BH//CA'

BA'//CH

=>BHCA' là hbh

=>H,I,A' thẳng hàng

8 tháng 4 2020

Chỉ mình đi mọi người

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
27 tháng 1 2019

A B C H P M O N K E F S T F' I

a) Xét \(\Delta\)ABC: Trực tâm H => ^BAC + ^BHC = 1800. Tương tự: ^BPC + ^BMC = 1800

Suy ra: ^BAC + ^BHC = ^BPC + ^BMC. Ta có: ^BHC = ^BMC (2 góc nội tiếp cùng chắn cung BC)

=> ^BAC = ^BPC => Tứ giác ABCP nội tiếp => P nằm trên (ABC) hay P thuộc (O) (đpcm)

b)  Gọi AO cắt BC tại F'. Ta đi chứng minh F trùng F'. Thật vậy:

Gọi 2 đường cao của tam giác ABC là BT và CS. ST cắt AH tại I.

Tứ giác BSTC nội tiếp => ^ATS = ^ABC => ^ATI = ^ABF'. Dễ thấy: ^TAI = ^BAF'

Suy ra: ^AF'B = ^AIT. Mà HE // AF', ^AIT = ^HIS nên ^HEB = ^HIS => \(\Delta\)HBE ~ \(\Delta\)HSI (g.g)

=> \(\frac{BE}{SI}=\frac{HB}{HS}=\frac{BC}{ST}=\frac{AC}{AS}\). Ta cũng có: \(\Delta\)AF'C ~ \(\Delta\)AIS (g.g) => \(\frac{CF'}{SI}=\frac{AC}{AS}\)

Do đó: \(\frac{BE}{SI}=\frac{CF'}{SI}\)=> BE = CF' . Mà BE = CF nên CF = CF' => F trùng F' => A,F,O thẳng hàng (đpcm).

c) Gọi K là tâm đường tròn ngoại tiếp \(\Delta\)BHC. Dễ thấy O đối xứng với K qua BC => CO=OP=CK (1)

Ta có: Hai đường tròn (N) và (K) có 2 điểm chung là B và M => KN vuông góc BM, kết hợp OK vuông góc BC

=> ^OKN = ^MBC (2 góc có 2 cạnh tương ứng vuông góc). Tương tự thì ^ONK = ^MBA

Mà ^MBC = ^MBA (Do BM là phân giác ^ABC) nên ^OKN = ^ONK => \(\Delta\)NOK cân tại O

Suy ra O nằm trên trung trực của NK và CP (Vì OP=OC)

Mặt khác: NK vuông góc BM. BM lại vuông góc CP (M là trực tâm \(\Delta\)BCP) => NK // CP

Từ đó: Trung trực của NK và CP trùng nhau => Tứ giác PNKC là hình thang cân => CK = PN (2)

Từ (1),(2) => PN = PO (đpcm).

12 tháng 7 2020

a) Do P là trực tâm tam giác BMC nên M là trực tâm tam giác PBC.

Từ đó ta có \(\widehat{BPC}=180^0-\widehat{BMC}\). Do H là trực tâm tam giác ABC nên \(\widehat{BAC}=180^0-\widehat{BHC}\)

Mà ta lại có \(\widehat{BHC}=\widehat{BMC}\)do tứ giác BHMC nội tiếp.

Do đó ta được \(\widehat{BPC}=180^0-\widehat{BMC}=180^0-\widehat{BHC}=\widehat{BAC}\). Suy ra bốn điểm A,B,C,P cùng thuộc một đường tròn

Vậy P nằm trên (O) 

b) Dựng đường kính AK của đường tròn (O). Khi đó dễ dàng chứng minh được tứ giác BHCK là hình bình hành.

Xét \(\Delta BHE\)và \(\Delta CKF\)có BE = CF,\(\widehat{HBE}=\widehat{KCF}\), BH = CK nên \(\Delta BHE=\Delta CKF\left(c-g-c\right)\)

Từ đó ta được \(\widehat{KFC}=\widehat{HEB}\)suy ra HE song song với KF. Lại có AK song song với HE nên ba điểm A, F, K thẳng hàng.

Vậy ba điểm A, F, O thẳng hàng (đpcm)

c) Gọi I là tâm đường tròn ngoại tiếp tam giác BHC. Ta có \(\Delta BHC=\Delta CKB\) nên bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác BKB. Từ đó ta suy ra được OB = OC = IB = IC. Chú ý rằng ON là đường trung trực của AB và OI là đường trung trực của BC, IN là đường trung trực của BM nên ta suy ra được \(\widehat{ONI}=\widehat{ABM}\)và \(\widehat{OIN}=\widehat{MBC}\)

Từ đó dẫn đến \(\widehat{ABM}=\widehat{MBC}=\frac{1}{2}\widehat{ABC}\)nên \(\widehat{OIN}=\widehat{ONI}=\frac{1}{2}\widehat{ABC}\)hay tam giác OIN cân tại O, đồng thời ta có \(\widehat{NOI}=180^0-2\widehat{NIO}=180^0-\widehat{ABC}\)

Lại có \(\widehat{POB}=2\widehat{PCB}=2\left(90^0-\widehat{MBC}\right)=180^0-2\widehat{MBC}=180^0-\widehat{ABC}\)

Từ đó ta được \(\widehat{NOI}=\widehat{POB}\)nên suy ra \(\widehat{NOP}=\widehat{IOB}\)

Hai tam giác OBI và OPN có \(OI=ON,\widehat{NOP}=\widehat{IOB},OB=ON\)nên \(\Delta OBI=\Delta POB\)

Mà tam giác OBO cân tại B nên tam giác OPN cân tại P. Từ đó suy ra PN = PO