">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2021

1.

\(\left(-3x-6\right)\left(2x+2\right)\left(x+3\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-3\\-2\le x\le-1\end{matrix}\right.\)

\(\Rightarrow x\in(-\infty;-3]\cup\left[-2;-1\right]\)

2.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\)

Ta có: \(d\left(M;d_1\right)=d\left(M;d_2\right)\)

\(\Leftrightarrow\dfrac{\left|3m-6\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3m+6\right|}{\sqrt{3^2+2^2}}\)

\(\Leftrightarrow\left|3m-6\right|=\left|3m+6\right|\Leftrightarrow\left[{}\begin{matrix}3m-6=3m+6\\3m-6=-3m-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6=6\left(vô-nghiệm\right)\\m=0\end{matrix}\right.\)

Vậy \(M\left(0;0\right)\)

NV
25 tháng 3 2021

3.

- Với \(m=0\Rightarrow-3< 0\) (thỏa mãn)

- Với \(m\ne0\) BPT đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}a=m< 0\\\Delta'=m^2+3m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3< m< 0\end{matrix}\right.\) \(\Rightarrow-3< m< 0\)

Kết hợp lại ta được: \(-3< m\le0\)

4.

\(P=xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{4\left(x+y\right)^2}=\dfrac{17}{4}\)

\(P_{min}=\dfrac{17}{4}\) khi \(x=y=\dfrac{1}{2}\)

20 tháng 10 2021

???????

20 tháng 10 2021

simp!

9 tháng 10 2016

giả sử AI kéo dài cắt BC tại D.

ta có: \(\frac{BD}{CD}=\frac{c}{b}\Rightarrow BD=\frac{c}{b}CD\Leftrightarrow\overrightarrow{DB}=-\frac{c}{b}\overrightarrow{DC}\Leftrightarrow\overrightarrow{DI}+\overrightarrow{IB}=-\frac{c}{b}\left(\overrightarrow{DI}+\overrightarrow{IC}\right)\Leftrightarrow\left(1+\frac{c}{b}\right)\overrightarrow{DI}=-\overrightarrow{IB}-\frac{c}{b}\overrightarrow{IC}\Leftrightarrow\overrightarrow{ID}=\frac{b}{b+c}\overrightarrow{IB}+\frac{c}{b+c}\overrightarrow{IC}\)

9 tháng 10 2016

tiếp: Xét tam giác ABD có ID/IA = BD/AB= (ac/b+c)/c=a/b+c

=> ID=(a/b+c)IA

=> \(\overrightarrow{ID}=-\frac{a}{b+c}\overrightarrow{IA}\)

Thế vào (1) ta đc: 

\(-\frac{a}{b+c}\overrightarrow{IA}=\frac{b}{b+c}\overrightarrow{IB}+\frac{c}{b+c}\overrightarrow{IC}\)

\(\Leftrightarrow\frac{1}{b+c}\left(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right)=0\)

<=> \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\): đpcm

28 tháng 8 2021

Mình trình bày cho dễ hiểu nha

\(sina-\sqrt{3}cosa\)   

\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)

\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)

\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)

Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)   

\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)   

Vậy Min=-2

Max=2

28 tháng 8 2021
Ăn đâu BUI đi 💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩
DD
24 tháng 8 2021

\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))

\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)

28 tháng 10 2019

Đề đâu???

28 tháng 10 2019

Đề nào cơ

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)