Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C
c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK
\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\) là tiếp tuyến của (O)
d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều
\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều
\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi
e . Ta có :
\(\Delta ACO\) đều
\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)
\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)
\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng
a) xét tam giác ABC nội tiếp đường tròn (O) có cạnh AB là đường kính =>tam giác ABC vuông tại C
b) có tam giác ABC vuông tại C từ pitago ta có
AB\(^2\)=AC\(^2\)+BC\(^2\)=>BC=\(\sqrt{AB^2-AC^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)
tam giác AOC có AC=AO=CO=R => tam giác AOC đều =>
\(\widehat{CAO}=60\)độ =>góc CBA = 30 độ (tam giác ABC vuông tại C)
c)xét tam giác COB có OC=OB=R=>tam giác COB cân tại O có OK vừa là trung tuyến (k là trung điểm CB) vừa là phân giác
=>góc COK=góc BOK hay góc COD=góc BOD
xét 2 tam giác COD và BOD có OC=OB, góc COD=góc BOD,OD là cạnh chung
tam giác COD = tam giác BOD(c-g-c) =>góc DCO=góc DBO=90 độ
mà OC = R =>CD là tiếp tuyến of (O)
d) Vì OC=OB,DC=DB=> OD là đường trung trực of BC mà M thuộc OD =>MC=MB (1)OD vuông góc CB => góc CKM = 90 độ
Tam giác CKO vuông tại K từ pitago có OK = \(\sqrt{CO^2-CK^2}=\sqrt{CO^2-\frac{BC^2}{4}}=\sqrt{R^2-\frac{3R^2}{4}}=\frac{R}{2}\)
=> KM = OM - OK = R - \(\frac{R}{2}=\frac{R}{2}\)=OK
tương tự xét tam giác CMK vuông tại K có CM =R (2)
có OC=OB (3)
Từ ( 1 ) ; (2);(3) => OC = CM =MB = OB =R =>Tứ giác OCMB là hình thoi
e) Tương tự câu b ta có tam giác EAO = ECO ( c-g-c)
=> Góc ECO = Góc EAO = 90 độ .
Ta có : Góc ECD = Góc ECO + Góc OCD = 90 độ + 90 độ = 180 độ
=> E ; C ; D thẳng hàng
Bạn OOOĐỒ DỐI TRÁ OOO ơi , cho mình hỏi là phần d í , tại sao OK = Căn của R^2 - BC^2 / 4 nnhir ? Mình không hiểu đoạn BC^2 / 4
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')