K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

a) dễ dàng chứng minh được MD2= MC2 = MA.MB ( bằng cách kẻ đường thẳng từ M qua O và chứng minh tam giác đồng dạng)

MC2=MA.MB => tam giác MAC đồng dạng với tam giác MCB => \(\frac{MA}{MC}=\frac{AC}{BC}\)(1)

MD2=MA.MB => tam giác MAD đồng dạng với tam giác MDB => \(\frac{MA}{MD}=\frac{AD}{BD}\)(2)

TỪ (1) và (2) => \(\frac{AC}{BC}=\frac{AD}{BD}\)=> AC.BD=AD.BC

b)

xét tam giác vuông MOE với đường cao OC; Đặt OM=x; 

\(\frac{1}{OE^2}+\frac{1}{OM^2}=\frac{OM^2+OE^2}{OM^2.OE^2}=\frac{ME^2}{OC^2.ME^2}\)=\(\frac{1}{OC^2}\)=>\(\frac{1}{OE^2}+\frac{1}{x^2}=\frac{1}{R^2}=>OE=\frac{x.R}{\sqrt{x^2-R^2}}\)

Tam giác MCO=tam giác MDO( vì OC=OD;OM cạnh chung và góc MCO=góc MDO=90o) => góc CMO = góc DMO 

tam giác MEF có MO vừa là đường cao vừa là phân giác nên MO cũng là đường trung tuyến của EF => EF=2OE

diện tích tam giác MEF là \(\frac{1}{2}OM.\)EF=OE.OM=\(\frac{x.R}{\sqrt{x^2-R^2}}x\)=R.\(\frac{x^2}{\sqrt{x^2-R^2}}\)\(\ge R\).R\(\sqrt{2}\)=R2\(\sqrt{2}\)

Thật vậy \(\frac{x^2}{\sqrt{x^2-R^2}}\ge2\sqrt{R}< =>\frac{x^4}{x^2-R^2}\ge4R\)<=> (x2-2R)2\(\ge0\)(đúng)

=> diện tích MEF nhỏ nhất khi x2=2R <=> x=OM =\(\sqrt{2R}\)hay M là giao của (O;\(\sqrt{2R}\)) và AB (có 2 điểm M thỏa mãn)

30 tháng 4 2017

a, Chứng minh ∆MEF:∆MOA

b, ∆MEF:∆MOA mà AO=OM => ME=EF

c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng

d, FA.SM = 2 R 2

e,  S M H O = 1 2 OH.MH ≤  1 2 . 1 2 M O 2 = 1 4 R 2

=> M ở chính giữa cung AC