Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)
\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)
\(=x^2\left(x-1\right)^2+\left(x-1\right)^2\)
\(=\left(x^2+1\right)\left(x-1\right)^2\)
\(\left(x-1\right)^2>=0\forall x\)
\(x^2+1>=1\forall x\)
Do đó: \(\left(x-1\right)^2\cdot\left(x^2+1\right)>=0\forall x\)
Dấu = xảy ra khi x=1
A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10
Ta có: (x+5)2>=0(với mọi x)
=> (x+5)2+10>=10(với mọi x)
hay A>=10(với mọi x)
Do đó, GTNN của A là 10 khi: (x+5)2=0
x+5=0
x=0-5
x=-5
Vậy GTNN của A là 10 tại x=-5
\(M=x^2+y^2-xy-x+y+1\)
\(4M=4x^2+4y^2-4xy-4x+4y+4\)
\(=\left(4x^2+y^2+1-4xy-4x+2y\right)+\left(3y^2+2y+3\right)\)
\(=\left(2x-y-1\right)^2+3\left(y^2+\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{8}{3}\)
\(=\left(2x-y-1\right)^2+3\left(y+\dfrac{1}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)
\(\Rightarrow M\ge\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\y+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(MinM=\dfrac{2}{3}\)
https://123doc.org/document/720452-cac-bai-toan-bat-dang-thuc-cosi-bai-tap-va-huong-dan-giai.htm
BẠN CÓ THỂ VÀO XEM
CHÚC BẠN HỌC TỐT
http://thuviengiaoan.vn/giao-an/chuyen-de-bat-dang-thuc-cosi-70748/
bạn có thể tham khảo thêm ở đây mình thấy khá hay và mình cũng đang học phần này, chúc bạn học tốt!
\(A=\dfrac{x^3-2x^2-15x}{x-5}=\dfrac{x\left(x^2-2x-15\right)}{x-5}=\dfrac{x\left(x+3\right)\left(x-5\right)}{x-5}=x\left(x+3\right)\)
\(A=x^2+3x=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
\(A_{min}=-\dfrac{9}{4}\)
a) Ta có :
\(A=2x-x^2-4\)
\(=2x-x^2-1-3\)
\(=-3-\left(x^2-2x+1\right)\)
\(=-3-\left(x-1\right)^2\)
\(\Rightarrow Max_A=-3\Leftrightarrow x=1\)
Vậy ...
b) \(B=-x^2-4x\)
\(=-x^2-4x-4+4\)
\(=-\left(x+2\right)^2+4\)
\(\Rightarrow Max_B=4\Leftrightarrow x=-2\)
Vậy ...
\(M=\frac{x^2+2x+64}{x}=\frac{x\left(x+2\right)+64}{x}=x+2+\frac{64}{x}=\left(x+\frac{64}{x}\right)+2\)
\(>=2\sqrt{x\cdot\frac{64}{x}}+2=2\cdot\sqrt{64}+2=2\cdot8+2=18\)(bdt cosi)
dấu = xảy ra khi \(x=\frac{64}{x}\Rightarrow x^2=64\Rightarrow x=8\)
vậy min M là 18 tại x=8