Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6:
a: =12x^2+4x-3x-1-5x^2+15x-x^2+7x-12
=6x^2+23x-13
b: =5x^2+5x-2x-2-3x^3+3x^2+9x-2x(x^2-9x+20)
=-3x^3+8x^2+14x-2-2x^3+18x^2-40x
=-5x^3+26x^2-26x-2
Câu 8:
a. Với $x,y$ là số nguyên thì $x, y-3$ cũng là số nguyên. Mà $x(y-3)=15$ nên ta có các TH:
TH1: $x=1, y-3=15\Rightarrow x=1; y=18$ (tm)
TH2: $x=-1, y-3=-15\Rightarrow x=-1; y=-12$ (tm)
TH3: $x=15; y-3=1\Rightarrow x=15; y=4$ (tm)
TH4: $x=-15; y-3=-1\Rightarrow x=-15; y=2$ (tm)
TH5: $x=3, y-3=5\Rightarrow x=3; y=8$ (tm)
TH6: $x=-3; y-3=-5\Rightarrow x=-3; y=-2$ (tm)
TH7: $x=5; y-3=3\Rightarrow x=5; y=6$ (tm)
TH8: $x=-5; y-3=-3\Rightarrow x=-5; y=0$ (tm)
Câu 8:
b.
$xy-2y+3(x-2)=7$
$\Rightarrow y(x-2)+3(x-2)=7$
$\Rightarrow (x-2)(y+3)=7$
Do $x,y$ nguyên nên $x-2, y+3$ nguyên. Mà tích của chúng bằng $7$ nên ta có các TH sau:
TH1: $x-2=1, y+3=7\Rightarrow x=3; y=4$ (tm)
TH2: $x-2=-1; y+3=-7\Rightarrow x=1; y=-10$ (tm)
TH3: $x-2=7, y+3=1\Rightarrow x=9; y=-2$ (tm)
TH4: $x-2=-7; y+3=-1\Rightarrow x=-5; y=-4$ (tm)
a: \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
b: \(27y^3+1=\left(3y+1\right)\left(9y^2-3y+1\right)\)
c: \(x^3-27=\left(x-3\right)\left(x^2+3x+9\right)\)
d: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
e: \(8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)
f: \(27x^3+64y^3=\left(3x+4y\right)\left(9x^2-12xy+16y^2\right)\)
g: \(x^3-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
Các số được điền vào các ô theo thứ tự từ trái sang phải là:
-1; - \(\dfrac{1}{3}\); \(\dfrac{2}{3}\); \(\dfrac{4}{3}\)
\(a.720:\left(x-17\right)=12\)
\(x-17=60\)
\(x=77\)
\(b.\left(x-28\right):12=8\)
\(x-28=96\)
\(x=124\)
\(c.26+8x=6x+46\)
\(8x-6x=46-26\)
\(2x=20\)
\(x=10\)
\(d.3600:\left[\left(5x+335\right):x\right]=50\)
\(\left(5x+335\right):x=72\)
\(5+335:x=72\)
\(335:x=67\)
\(x=5\)
a) \(720:\left(x-17\right)=12\)
\(\Rightarrow x-17=\dfrac{720}{12}\)
\(\Rightarrow x-17=60\)
\(\Rightarrow x=60+17\)
\(\Rightarrow x=77\)
b) \(\left(x+28\right):12=8\)
\(\Rightarrow x+28=12\cdot8\)
\(\Rightarrow x+28=96\)
\(\Rightarrow x=96-28\)
\(\Rightarrow x=68\)
c) \(26+8x=6x+46\)
\(\Rightarrow8x-6x=46-26\)
\(\Rightarrow2x=20\)
\(\Rightarrow x=\dfrac{20}{2}\)
\(\Rightarrow x=10\)
d) \(3600:\left[\left(5x+335\right):x\right]=50\)
\(\Rightarrow\left(5x+335\right):x=\dfrac{3600}{50}\)
\(\Rightarrow\left(5x+335\right):x=72\)
\(\Rightarrow5x+335=72\cdot x\)
\(\Rightarrow72x-5x=335\)
\(\Rightarrow67x=335\)
\(\Rightarrow x=\dfrac{335}{67}\)
\(\Rightarrow x=5\)
a: Xét ΔABE và ΔADC có
AB=AD
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
Do đó: ΔABE=ΔADC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
và góc đối diện với cạnh BC là \(\widehat{BAC}\)
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
AB<AC
Do đó: HB<HC
c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD(gt)
Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔCBD có CB=CD(cmt)
nên ΔCBD cân tại C(Định nghĩa tam giác cân)
Ta thấy các PS đều có dạng: \(\dfrac{1}{1+\left(n+2\right)},\dfrac{2}{2+\left(n+2\right)},...,\dfrac{p-2}{p-2+\left(n+2\right)},\dfrac{p-1}{p-1+\left(n+2\right)}\)Tức là có dạng \(\dfrac{p}{p+\left(n+2\right)}\)
⇒ p và n+2 là nguyên tố cùng nhau
Thế thì p là số nguyên tố nào z
:v ủa vậy nói k mấy đi :v