K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Bạn muốn làm gì với phân thức đó thì bạn cần ghi rõ ra!

Đề bài yêu cầu gì vậy bạn?

c) Ta có: \(\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{\sqrt{6}}{\sqrt{3}}-3\cdot\sqrt{\dfrac{1}{3}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{3}\)

=0

16 tháng 12 2021

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a\cdot0+b=-2\\-3a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)

3 tháng 9 2021

Đặt \(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\)

\(A=\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(a+7b\right)}}+\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(b+7c\right)}}+\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(c+7a\right)}}\)

\(\ge\dfrac{4}{\dfrac{8+8+a+7b}{3}}+\dfrac{4}{\dfrac{8+8+b+7c}{3}}+\dfrac{4}{\dfrac{8+8+c+7a}{3}}\ge\dfrac{\left(2+2+2\right)^2}{\dfrac{8+8+a+7b+8+8+b+7c+8+8+c+7a}{3}}\)

\(=\dfrac{36.3}{8\left(a+b+c\right)+48}=\dfrac{3}{2}\)

Vậy \(A_{min}=\dfrac{3}{2}\Leftrightarrow a=b=c=1\)

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 5 2021

 làm câu b đc ko ạ

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)