Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
vì ABC là Δ vuông
=>góc BAC =90 độ
mà AB vuông góc vs AC
=> MD//AC
=> DM//EC
trong Δ ABC có :
DM//AC
M là trung điểm của BC
=>MD là đg trung bình của Δ ABC
=>MD=1/2 AC (1)
vì ADME là HCN
=>MD=AE (2)
từ (1) và (2)
=>1/2 AC=AE
=>E là trung điểm của AC
=>AE=EC
Mà AE=DM
=>DM=EC
trong tứ giác CMDE có :
- DM//EC
- DM=EC
=>CMDE là hình bình hành
mìk chỉ làm được câu b) thui nha
b) \(\Delta ABC\) vuông tại A, có AM là trung tuyến => AM = MB = MC.
=> Tam giác AMC cân tại M, có ME là đường cao.
=> ME là đường trung tuyến <=> CE = EA.
Vì ADME là hình chữ nhật => EA=MD ( T/c hình chữ nhật )
=> CE=MD (1)
MA=MB => Tam giác MAB cân tại M, có MD là đường cao
=> MD cũng là đường trung tuyến <=> AD=DB
- Xét tam giác ABC có CE=EA , AD=DB
=> ED là đường trung bình của tam giác ABC
<=> ED // BC , ED = \(\frac{1}{2}BC\) = MC = MB (2)
Từ (1) và (2) suy ra tứ giác CMDE là hình bình hành ( vì có các cặp cạnh đối bằng nhau )