K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

22 tháng 5 2022

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật.

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

b: Xét ΔCAB có 

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét tứ giác CEDM có 

DM//CE

DM=CE

Do đó: CEDM là hình bình hành

c: Ta có: ΔAHC vuông tại H

mà HE là đường trung tuyến

nên HE=AC/2=MD

Xét ΔABC có 

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔBAC có

E la trung điểm của AC

D là trung điểm của AB

Do đó: ED là đường trung bình

=>ED//BC

hay ED//MH

=>EMHD là hình thang

mà EH=MD

nên EMHD là hình thang cân

18 tháng 12 2016

vì ABC là Δ vuông

=>góc BAC =90 độ

mà AB vuông góc vs AC

=> MD//AC

=> DM//EC

trong Δ ABC có :

DM//AC

M là trung điểm của BC

=>MD là đg trung bình của Δ ABC

=>MD=1/2 AC (1)

vì ADME là HCN

=>MD=AE (2)

từ (1) và (2)

=>1/2 AC=AE

=>E là trung điểm của AC

=>AE=EC

Mà AE=DM

=>DM=EC

trong tứ giác CMDE có :

  • DM//EC
  • DM=EC

=>CMDE là hình bình hành

mìk chỉ làm được câu b) thui nha

18 tháng 12 2016

b) \(\Delta ABC\) vuông tại A, có AM là trung tuyến => AM = MB = MC.

=> Tam giác AMC cân tại M, có ME là đường cao.

=> ME là đường trung tuyến <=> CE = EA.

Vì ADME là hình chữ nhật => EA=MD ( T/c hình chữ nhật )

=> CE=MD (1)

MA=MB => Tam giác MAB cân tại M, có MD là đường cao

=> MD cũng là đường trung tuyến <=> AD=DB

- Xét tam giác ABC có CE=EA , AD=DB

=> ED là đường trung bình của tam giác ABC

<=> ED // BC , ED = \(\frac{1}{2}BC\) = MC = MB (2)

Từ (1) và (2) suy ra tứ giác CMDE là hình bình hành ( vì có các cặp cạnh đối bằng nhau )

 

 

20 tháng 12 2016

Câu c có sai k v bạn??

20 tháng 12 2016

a) Xét tứ giác ABCD có:

. M là trung điểm của BC ( AM là đường trung tuyến)

. M là tđ của AD ( gt)

Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)

\(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)

--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)

b) Ta có: \(IA\perp AC\)

\(CD\perp AC\)

\(\Rightarrow\) IA // CD

Xét tứ giác BIDC có:

. IA // CD (cmt)

\(\Rightarrow\) IB // CD ( B ϵ IA )

. AB =CD ( cạnh đối hcn ABCD )

mà AB = IB ( tính chất đối xứng)

\(\Rightarrow\) IB = CD ( cùng = AB )

Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)

\(\Rightarrow\) BC // ID ( cạnh đối hbh)

" đề câu c sai nha bạn"