Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác AMN, ta có:
MN = AN.sin(∠MAN) (định lí sin)
Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:
MN = AD.cos(∠CAB).sin(∠BAC)
Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:
cos(∠CAB).sin(∠BAC) = sin(∠BAC)
Áp dụng định lí sin, ta có:
cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)
Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:
sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)
Vậy, MN = AD.sin(BAC).
Như vậy, đã chứng minh hai điều kiện trên.
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\)\(\frac{1}{9}=\frac{1}{25x^2}+\frac{1}{36x^2}\)
\(\Leftrightarrow\)\(\frac{61}{900x^2}=\frac{1}{9}\)
\(\Rightarrow\)\(900x^2=549\)
\(\Rightarrow\)\(x=\sqrt{\frac{549}{900}}=\frac{\sqrt{61}}{10}\)
\(\Rightarrow\)\(AB=\frac{\sqrt{61}}{2}\); \(AC=\frac{3\sqrt{61}}{5}\)
Áp dụng Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\) \(BC=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
\(\Leftrightarrow\)\(BC=\frac{\sqrt{61}}{10}.\sqrt{61}=6,1\)
p/s: bạn tham khảo nhé, do số không đẹp nên có lẽ mk tính toán sai 1 số chỗ, bạn bỏ qua và ktra nhé, sai đâu ib mk
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
Áp dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Leftrightarrow\)\(30x^2=3x\sqrt{61}\)
\(\Leftrightarrow\)\(x=\frac{\sqrt{61}}{10}\)
Đến đây bạn thay x vào các biểu thức tính AB,AC,BC ở trên nhé