Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.A=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\left(1-\dfrac{x}{x+2}\right)\left(đk:x\ne\pm2\right)\)
\(=\left[\dfrac{x}{x^2-4}+\dfrac{x-2}{x^2-4}-\dfrac{2\left(x+2\right)}{x^2-4}\right]:\left(\dfrac{x+2}{x+2}-\dfrac{x}{x+2}\right)\)
\(=\dfrac{x+x-2-2x-4}{x^2-4}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}.\dfrac{x+2}{2}\)
\(=\dfrac{-3}{x-2}\left(1\right)\)
\(b.\) Thay x = 2023 vào (1), ta được:
\(\dfrac{-3}{2023-2}=-\dfrac{3}{2021}\)
\(c.\) Để A là một số nguyên thì \(x-2\inƯ_{\left(-3\right)}\)
Vậy x - 2 có các giá trị sau:
\(\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=5\\x=-1\end{matrix}\right.\)
Bài 3:
a) Xét ΔADB và ΔEDC có
\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)
\(\widehat{BAD}=\widehat{CED}\)(hai góc so le trong, AB//CE)
Do đó: ΔADB\(\sim\)ΔEDC(g-g)
Bài 3:
b) Ta có: \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
mà \(\widehat{BAD}=\widehat{CED}\)(hai góc so le trong, AB//CE)
nên \(\widehat{CAD}=\widehat{CED}\)
hay \(\widehat{CAE}=\widehat{CEA}\)
Xét ΔACE có \(\widehat{CAE}=\widehat{CEA}\)(cmt)
nên ΔCAE cân tại C(Định lí đảo của tam giác cân)
Suy ra: CA=CE(hai cạnh bên)
mà CA=20cm(gt)
nên CE=20cm
Ta có: ΔADB\(\sim\)ΔEDC(cmt)
nên \(\dfrac{AD}{DE}=\dfrac{AB}{EC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{DE}=\dfrac{15}{20}=\dfrac{3}{4}\)
đăng tối đa 3 câu 1 lần thuiii ạ
Ok