K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Nếu em thay $x=9,10,...$ không ra kết quả thì có nghĩa bài toán không có nghiệm $x=9,10,...$ thôi. 

Em xét 3 TH:

$x\geq 7$

$3\leq x< 7$

$x< 3$

Để phá trị tuyệt đối

Còn không có chuyện phải thay $x\leq 7$

30 tháng 7 2021

 Akai Haruma  Chị ơi khi mà kết hợp điều kiện thì phải dùng dấu ngoặc nhọn hay ngoặc vuông ạ ví dụ như 3 TH ở trên ạ 

Câu 1:   Kết quả so sánh 3 và căn 8là:   A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)< \(\sqrt{8}\)Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. x < \(\dfrac{2}{3}\)Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng: A.  \(3-2\sqrt{2}\)      B.  \(1-\sqrt{2}\)           C.  \(\sqrt{2}-1\)           D. \(2\sqrt{2}+3\)Câu 4. Kết...
Đọc tiếp

Câu 1:   Kết quả so sánh 3 và căn 8là:

  A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)\(\sqrt{8}\)

Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:

A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. \(\dfrac{2}{3}\)

Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng:

 A.  \(3-2\sqrt{2}\)      B.  \(1-\sqrt{2}\)           C.  \(\sqrt{2}-1\)           D. \(2\sqrt{2}+3\)

Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:

            A.   \(-b\sqrt{a}\)         B.    \(b\sqrt{a}\)     C  .\(a\sqrt{b}\)            D.  \(-a\sqrt{b}\)

Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\)  (với a b cùng dấu) ta được:

   A.  \(\dfrac{\sqrt{2ab}}{a}\)         B.  \(\dfrac{\sqrt{2ab}}{b}\)        C.  \(\dfrac{\sqrt{2ab}}{-b}\)                D.  \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)

Câu 6: Hàm số y =  \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:

          A. m ≠ 5            B. m > 5             C. m < 5           D. m  = 5

Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:

     A. (d1)          B. (d2)           C. (d3)             D. (d1) và (d3)

Câu 8:   Hai đường thẳng y = -3x +4  và y = (m+1)x +m  song song với nhau khi m bằng:

          A. 4                      B. -2                     C. -3                     D. -4

Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?

   A. y =   \(7+\left(\sqrt{2}-3\right)x\)       B. y = \(4-\left(1-\sqrt{3}\right)x\)           C. y = \(-5-\left(1-\sqrt{2}\right)x\)            D. y = 4+ x

Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?

     A. y=x +2 và  y= -x+2                   B. y= -3-2x và  y= -2x-3                

C. y= 2x -1 và  y= 2+3x                     D. y=1 – 2x và  y= -2x+3

Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?

A.y+ x = -1           B. 2x + y = 1        C. 2y = 2 – 2x      D. 3y = -3x +1

Câu 12:  Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?

A.(1; -1)             B. ( -1; 1)                  C. (3;2)                D. (2; 3)

 

1

Câu 1: A

Câu 2: B

Câu 3: C

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

14 tháng 1 2016

\(P=\left(\frac{2\left(\sqrt{x}+2\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{x+2\sqrt{x}}{2\sqrt{x}}\) điều kiện x >0

\(P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}.\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}=1+\frac{4+x}{2\sqrt{x}}.\)

b) P = 3

\(\Leftrightarrow1+\frac{4+x}{2\sqrt{x}}=3\Leftrightarrow\frac{4+x}{2\sqrt{x}}=2\)

\(\Leftrightarrow4+x=4\sqrt{x}\Leftrightarrow4+x-4\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

14 tháng 1 2016

Ngô Văn Tuyên cảm ơn bạn nha. Nhưng cho mình hỏi tí sao bạn lại tách ra thành \(1+\frac{4-x}{2\sqrt{x}}\)

giải thích hộ mình với nhé. Cảm ơn nhiều !!

12 tháng 5 2017

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

    \(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

    \(=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

     \(=\frac{3\left(\sqrt{x}+3\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\left(\sqrt{x}+2\right)}\)

     \(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

      

11 tháng 5 2017

mình cũng ra thế mà  . TÀO LAO à ????

19 tháng 7 2021

\(3-\sqrt{x}\) chưa chắc đã âm

thử x=4=>3-2=1>0

19 tháng 7 2021

Anh ơi cô em bảo âm ạ

Các bạn chỉ mình ! Bài này là bài Có biểu thứcvà đây là phần c ) Tìm x để \(P< -\dfrac{1}{2}\), mình giải ra rồi P = \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\). Mình nghĩ ra mấy cách như thế này nhưng không biết nó cứ như nào ấy Cách 1 : Chuyển vế \(-\dfrac{1}{2}\) sang thì sẽ ra \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) , giải ra cũng ra kết quả là x<9* Nhưng cho mình hỏi về cách này : Mình nghĩ là \(-\dfrac{3}{\sqrt{x}+3}\) đang nhỏ hơn \(-\dfrac{1}{2}\left(-0,5\right)\) , nó đang nhỏ hơn -0,5 mà nếu chuyển vế sang thì \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) ( mình nghĩ nếu nhỏ hơn 0 thì không thể nhỏ hơn -0,5 được ) , nhưng tại sao nó vẫn ra kết quả vậy ạ . Giair thích cho mình chỗ mà mình đang bị nhầm lẫn và sửa giúp mình nhá ! Cách 2 : Vẫn đê nguyên như cũ \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\) ( vì \(\sqrt{x}+3>0\) , 2>0 ) nên là mình nhân chéo . Mình lấy 1 công thức tổng quát : \(-\dfrac{a}{b} -\dfrac{c}{d}\) * Nếu mà mình nhân theo kiểu \(-a.d -c.b\)  và 1 kiểu khác \(b.\left(-c\right) \left(-a\right).d\) hai kiểu này nó lại khác nhau mà làm theo kiểu thứ nhất thì nó lại đúng vẫn ra x<9 . Các bạn cũng chỉ mình chỗ sai nhé ạ và giúp mình sửa ạ Chị  Akai Haruma  , chị...
Đọc tiếp

Các bạn chỉ mình ! 

Bài này là bài Có biểu thức

và đây là phần c ) Tìm x để \(P< -\dfrac{1}{2}\), mình giải ra rồi P = \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\). Mình nghĩ ra mấy cách như thế này nhưng không biết nó cứ như nào ấy 

Cách 1 : Chuyển vế \(-\dfrac{1}{2}\) sang thì sẽ ra \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) , giải ra cũng ra kết quả là x<9

* Nhưng cho mình hỏi về cách này : Mình nghĩ là \(-\dfrac{3}{\sqrt{x}+3}\) đang nhỏ hơn \(-\dfrac{1}{2}\left(-0,5\right)\) , nó đang nhỏ hơn -0,5 mà nếu chuyển vế sang thì \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) ( mình nghĩ nếu nhỏ hơn 0 thì không thể nhỏ hơn -0,5 được ) , nhưng tại sao nó vẫn ra kết quả vậy ạ . Giair thích cho mình chỗ mà mình đang bị nhầm lẫn và sửa giúp mình nhá ! 

Cách 2 : Vẫn đê nguyên như cũ \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\) ( vì \(\sqrt{x}+3>0\) , 2>0 ) nên là mình nhân chéo . Mình lấy 1 công thức tổng quát : \(-\dfrac{a}{b}< -\dfrac{c}{d}\) 

* Nếu mà mình nhân theo kiểu \(-a.d< -c.b\)  và 1 kiểu khác \(b.\left(-c\right)< \left(-a\right).d\) hai kiểu này nó lại khác nhau mà làm theo kiểu thứ nhất thì nó lại đúng vẫn ra x<9 . Các bạn cũng chỉ mình chỗ sai nhé ạ và giúp mình sửa ạ 

Chị  Akai Haruma  , chị giúp em với ạ ! 

 

 

3
NV
25 tháng 7 2021

Tại sao em lại nghĩ nhỏ hơn 0 thì không nhỏ hơn -0.5 được?

\(-3< 0\) nhưng \(-3< -0.5\) vẫn đúng đó thôi, 2 điều này đâu liên quan đâu nhỉ?

Khi nhân chéo 1 BPT thì: nếu mẫu số luôn dương BPT sẽ giữ nguyên chiều, nếu mẫu số luôn âm BPT sẽ đảo chiều.

Với a;b;c;d dương:

Khi em để dạng \(-\dfrac{a}{b}< -\dfrac{c}{d}\) và nhân chéo: \(-ad< -bc\) (nghĩa là nhân b, d lên, 2 đại lượng này dương nên BPT giữ nguyên chiều, đúng)

Còn "kiểu khác" kia của em \(b.\left(-c\right)< \left(-a\right).d\) nó từ bước nào ra được nhỉ?

25 tháng 7 2021

thì vì cái P đó nó nhỏ hơn -0,5 nên bạn chuyển vế qua thành P+0,5<0 vẫn là 1 cách làm đúng (mình còn hay dùng cách này nữa mà)

còn khúc bạn lập luận vì nhỏ hơn 0 nên vẫn chưa chắc nhỏ hơn -0,5 có lẽ là bạn quên cái khúc mà nhỏ hơn 0 là bạn đã + 0,5 vào rồi nên nó ko phải là P nữa

và bài toán này có nhiều cách giải,bạn có thể làm như cách 1 và 2 cũng được,theo mình thì cách 2 mình ít khi làm vì phải cẩn thận ngồi xem dấu,cả 2 vế cùng dấu mới làm vậy được nên cũng hơi khó khăn,đó là theo mình thôi,còn bạn làm cách nào cũng được