K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

a)\(-\left(a-c\right)-\left(a-b+c\right)\)

\(=-a+c-a+b-c\)

\(=\left(-a-a\right)+\left(c-c\right)+b\)

\(=-2a+b=0\)

\(-2a=b\)

b)\(-\left(a-b+c\right)-\left(a+b+c\right)\)

\(=-a+b-c-a-b-c\)

\(=\left(-a-a\right)+\left(b-b\right)+\left(-c-c\right)\)

\(=-2a+0=-2c\)

\(=-2a+-2c\)

c)\(\left(a+b\right)-\left(a-b\right)+\left(a-c\right)-\left(a+c\right)\)

\(=a+b-a+b+a-c-a-c\)

\(=\left(a-a+a-a\right)+\left(b+b\right)+\left(-c-c\right)\)

\(=0+2b+\left(-2c\right)\)

\(=2b+\left(-2c\right)\)

d)\(\left(a+b-c\right)+\left(a-b+c\right)-\left(b+c-a\right)-\left(a-b-c\right)\)

\(=a+b-c+a-b+c-b-c+a-a+b+c\)

\(=\left(a+a+a-a\right)+\left(b-b-b+a\right)+\left(-c+c-c+c\right)\)

\(=2a+0+0\)

\(=2a\)

7 tháng 1 2020

a)-(a-c)-(a-b+c)

=-a+c-a+b-c

=-2a+b

b)-(a-b+c)-(a+b+c)

=-a+b-c-a-b-c

=-2a-2c

=-2(a+c)

c)(a+b)-(a-b)+(a-c)-(a+c)

=a+b-a+b+a-c-a-c

=2b-2c

=2(b-c)

d)(a+b-c)+(a-b+c)-(b+c-a)-(a-b-c)

=a+b-c+a-b+c-b-c+a-a+b+c

=2a

Bài 3.Cho biểu thức: A = (-a + b –c) –(-a –b –c)a) Rút gọn A                  b) Tính giá trị của A khi a = 1; b = –1; c = –2Bài 4.Cho biểu thức: A = (–m + n –p) –(–m –n –p)a) Rút gọn A                                          b) Tính giá trị của A khi m = 1; n= –1; p = –2Bài 5.Cho biểu thức: A = (–2a + 3b –4c) –(–2a –3b –4c)a) Rút gọn A                                        b) Tính giá trị của A khi a = 2012; b = –1; c...
Đọc tiếp

Bài 3.Cho biểu thức: A = (-a + b –c) –(-a –b –c)

a) Rút gọn A                  b) Tính giá trị của A khi a = 1; b = –1; c = –2

Bài 4.Cho biểu thức: A = (–m + n –p) –(–m –n –p)

a) Rút gọn A                                          b) Tính giá trị của A khi m = 1; n= –1; p = –2

Bài 5.Cho biểu thức: A = (–2a + 3b –4c) –(–2a –3b –4c)

a) Rút gọn A                                        b) Tính giá trị của A khi a = 2012; b = –1; c = –2013

bài 6 Bỏ dấu ngoặc rồi thu gọn biểu thức: 

a) A = (a + b) –(a –b) + (a –c) –(a + c)             b) B = (a + b –c) + (a–b + c) –(b + c –a) –(a –b –c)

bài 7 Liệt kê và tính tổng tất cả các số nguyên x thỏa măn:

a)–77bé hơn hoặc bằng x <7                            b)–96<x bè hơn hoặc bằng 6

Bài 8.Tính tổng tất cả các số nguyên x thỏa mãn : |x| < 2013

2
3 tháng 5 2016

nhiều thế ai làm đc  bucminh

3 tháng 5 2016

thif lm từng câu 1

24 tháng 11 2017

Đáp án: C

A ∩  B = {b; d}; A ∩  C = {a; b}; B ∩ C = {b; e}

A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}

A ∪  B = {a; b; c; d; e}; A ∪  C = {a; b; c; d; e}

A ∩  (B \ C) = {d}. (A ∩  B) \ (A ∩  C) =  {d}.

A \ (B ∩ C) = {a; c; d}. (A \ B) ∪  (A \ C) = {a; c; d}.

(A \ B) ∩  (A \ C) = {c}.

a. A ∩  (B \ C) = (A ∩  B) \ (A ∩  C) ={d} ⇒ a đúng.

b. A \ (B ∩ C)= {a; c; d}  (A \ B) ∩  (A \ C)={c} ⇒ b sai.

c. A ∩  (B \ C) ={d}  (A \ B) ∩  (A \ C)={c}   c sai

d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.

7 tháng 3 2022

\(S=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

\(S=\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}=a\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge a.\dfrac{4}{b+c}+b.\dfrac{4}{a+c}+c.\dfrac{4}{a+b}=4\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)

7 tháng 3 2022

Dạ vâng ạ, em chiều nay cũng vừa nghĩ ra được cách này.
Em cám ơn nhiều lắm ạ!

1 tháng 4 2020

mình nghĩ đề nó như thế này

\(\sqrt{a^2+b^2}-\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2-\left(b+d^{ }\right)^2}\)

hai zế BĐT ko âm nên bình phương 2 zế ta có

\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+2ac+c^2+b^2+2bd+d^2\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\left(1\right)\)

Nếu \(ac+bd< 0\)thì BĐT đc c/m

Nêu \(ac+bd\ge0\left(1\right)\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2acbd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2acbd\)

\(\Leftrightarrow a^2d^2+b^2c^2-2acbd\ge0\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )

dấu = xảy ra khi \(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

6 tháng 3 2022

ca này để thầy lâm ròi:<

6 tháng 3 2022

:v

Bài 1: 

\(\left(2x+3\right)^2-\left(2x+3\right)\left(4x-6\right)+\left(2x-3\right)^2+xy\)

\(=\left(2x+3\right)^2-2\cdot\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)

\(=\left(2x+3-2x+3\right)^2+xy\)

\(=xy+36=2\cdot\left(-1\right)+36=36-2=34\)

Bài 2: 

a: \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

b: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(a^2+2ab+b^2+2ac+c^2+2bc+a^2+ab+ac+a^2-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)