K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (3+x^2)^5

SHTQ là: \(C^k_5\cdot\left(x^2\right)^{5-k}\cdot3^k=C^k_5\cdot x^{10-2k}\cdot3^k\)

SỐ hạng chứa x^4 tương ứng với 10-2k=4

=>k=3

=>Số hạng đó là 270x^4

b: \(\Leftrightarrow\dfrac{\left(n+1\right)!}{\left(n+1-1\right)!\cdot1!}+3\cdot\dfrac{\left(n+2\right)!}{\left(n+2-2\right)!\cdot2!}=\dfrac{\left(n+1\right)!}{\left(n+1-3\right)!\cdot3!}\)

=>\(\left(n+1\right)+3\cdot\dfrac{\left(n+1\right)\left(n+2\right)}{2}=\dfrac{\left(n+1\right)\cdot n\cdot\left(n-1\right)}{6}\)

=>6n+6+9(n^2+3n+2)=n^3-n

=>n^3-n=6n+6+9n^2+27n+18=9n^2+33n+24

=>n^3-9n^2-34n-24=0

=>n=12

(x^2+3)^12

SHTQ là \(C^k_{12}\cdot\left(x^2\right)^{12-k}\cdot3^k=C^k_{12}\cdot3^k\cdot x^{24-2k}\)

Số hạng chứa x^6 tương ứng với 24-2k=6

=>2k=18

=>k=9

=>Hệ số là 4330260

19 tháng 2 2022

undefined

22 tháng 11 2021

Bạn cần giúp bài nào nhỉ?

22 tháng 11 2021

1b)

Song song => (d): x-y +a =0

Vì d đi qua C(2;-2) => 2- (-2)+a=0

<=>a=4

=> d: x-y+4=0

21 tháng 1 2022

C3: Hệ bpt trở thành: \(\left\{{}\begin{matrix}x\ge1-m\\mx\ge2-m\end{matrix}\right.\)

a, Để hệ phương trình vô nghiệm thì \(m=0\)

b, Để hệ có nghiệm duy nhất thì \(\left\{{}\begin{matrix}m\ne0\\\dfrac{m-2}{m}=1-m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m=\pm\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\) \(m=\pm\sqrt{2}\)

c, \(x\in\left[-1;2\right]\) \(\Leftrightarrow\) \(-1\le x\le2\)

Để mọi \(x\in\left[-1;2\right]\) là nghiệm của hệ bpt trên thì

\(\left\{{}\begin{matrix}-1\le1-m\le2\\-1\le\dfrac{2-m}{m}\le2\end{matrix}\right.\) với \(m\ne0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\ge m\ge-1\\m\ge\dfrac{2}{3}\end{matrix}\right.\) \(\left(m\ne0\right)\)

\(\Leftrightarrow\) \(2\ge m\ge\dfrac{2}{3}\)

Vậy \(m\in\left[\dfrac{2}{3};2\right]\) thì mọi \(x\in\left[-1;2\right]\) là nghiệm của hệ bpt

Chúc bn học tốt!

NV
29 tháng 7 2021

18.

Do D thuộc trục hoành nên tọa độ có dạng: \(D\left(a;0;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)

\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)

\(\Rightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

19.

\(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{2.\left(-1\right)+1.0+0.\left(-2\right)}{\sqrt{2^2+1^2+0^2}.\sqrt{\left(-1\right)^2+0^2+\left(-2\right)^2}}=-\dfrac{2}{5}\)

20.

\(\overrightarrow{OA}=\left(2;2;1\right)\Rightarrow OA=\sqrt{2^2+2^2+1^2}=3\)