Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+4+7+..+n
Tổng S có số số hạng là \(\frac{\left(n-1\right)}{3}+1=\frac{n+2}{3}\)
Tổng S có giá trị là
\(S=\frac{\left(n+1\right)}{2}.\frac{n+2}{3}=\frac{\left(n+1\right)\left(n+2\right)}{6}\)
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z
Chúc sớm tìm được thêm nhiều lời giải nha!
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Theo đề ta có :
n(n + 5) - (n - 3)( n + 2 ) = n.n + 5.n - (n.n + 2.n -3.n - 3.2)
= n\(^2\) + 5n - ( n\(^2\) + 2n - 3n - 6)
= n\(^2\) + 5n - n\(^2\) - 2n + 3n + 6
= (n \(^2\) - n\(^2\)) + ( 5n - 2n + 3n) +6
= 0 + 6n +6
= 6(n+1) luôn luôn chia hết cho 6
Vậy biểu thức n(n + 5) - (n - 3)(n + 2) luôn luôn chia hết cho 6 (đpcm)
k vs kb với mik nhé, 3
\(\left(x+2\right)\left(x^2+2x-9\right)\)
\(=x^3+2x^2-9x+2x^2+4x-18\)
\(=x^3+4x^2-5x-18\)
\(\left(x^{2y}-6\right)\left(x^2-5\right)\)
\(=x^{4y}-5x^{2y}-6x^2+30\)
\(\left(x+y\right)\left(xy-4+y\right)\)
\(=x^2y-4x+xy+xy^2-4y+y^2\)
câu còn lại tương tự nha
1) Ta có: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)+ \(3xyz\)
Mà x+y+z=0
=> \(x^3+y^3+z^3=3xyz\)
( ko thể = 3xy2)
2) Ta có: \(A=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
= \(\left(n+1\right)\left(n+4\right)\cdot\left(n+2\right)\left(n+3\right)+1\)
= \(\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)
Đặt t= \(n^2+5n+5\)
=> A= \(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\) là 1 số chính phương.