Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên sửa đề thành: \(\frac{54\cdot107-53}{53\cdot107+54}\)
Thì \(=\frac{54\cdot\left(54+53\right)-53}{53\left(53+54\right)+54}=\frac{54^2+53\left(53+1\right)-53}{53^2+54\cdot\left(54-1\right)+54}=\frac{54^2+53^2}{53^2+54^2}=1\)
Chứ nguyên đề thì tính hợp lý sao?
\(\dfrac{54\times107-53}{53\times107+54}=\dfrac{53\times107+53-53}{53\times107+54}=\dfrac{53\times107}{53\times107+54}< 1\)
\(\dfrac{135\times269-133}{134\times269+135}=\dfrac{134\times269+269-133}{134\times269+135}=\dfrac{134\times269+136}{134\times269+135}>1\)
\(\Rightarrow\dfrac{54\times107-53}{53\times107+54}< \dfrac{135\times269-133}{134\times269+135}\)
\(\frac{1}{3x7}+\frac{1}{7x11}+.....+\frac{1}{Xx\left(Xx4\right)}=\frac{5}{63}\)
Ai nhanh mk tik nha!
Ta có:
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x.\left(x+4\right)}=\frac{5}{63}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{x.\left(x+4\right)}\right)=\frac{5}{63}\)
\(\Rightarrow\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{5}{63}:\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{20}{63}\Leftrightarrow\frac{1}{x+4}=\frac{1}{63}\Leftrightarrow x=63-4=59\)
\(\frac{1}{3}\) + \(\frac{5}{6}\): \(\left(x-2\frac{1}{5}\right)\)= \(\frac{3}{4}\)
<=> \(\frac{5}{6}\):\(\left(x-2\frac{1}{5}\right)\)= \(\frac{3}{4}\)- \(\frac{1}{3}\)
<=> \(\frac{5}{6}\) : \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{12}\)
<=> \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{6}\) : \(\frac{5}{12}\)
,<=> \(\left(x-2\frac{1}{5}\right)\)= 2
<=. x = 2 + \(\frac{11}{5}\)
<=> x = \(\frac{21}{5}\)
\(C=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(C=\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{13}\)
\(C=1-\frac{1}{13}\)
\(C=\frac{12}{13}\)
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(C=\frac{1}{1}-\frac{1}{3}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(C=\frac{1}{1}-\frac{1}{13}\)
\(C=\frac{12}{13}\)
Ta có : \(C=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+......+\frac{2}{41.42}\)
\(C=2\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{41.42}\right)\)
\(C=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{41}-\frac{1}{42}\right)\)
\(C=2\left(\frac{1}{3}-\frac{1}{42}\right)\)
\(C=2.\frac{13}{42}=\frac{13}{21}\)
\(M=\frac{\left(53+1\right)x107-53}{53x107+54}\)
\(M=\frac{53x107+107-53}{53x107+54}\)
\(M=\frac{53x107+54}{53x107+54}\)
\(M=1.\)