K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Đề là sao ? =)

Bạn đưa đề vậy giúp sao đc

 Hok tốt :)

23 tháng 7 2019

de chi the thi

16 tháng 3 2020

1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương 

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

11 tháng 9 2021

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)

\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)

\(=x^2y^2+2xy-x^2-y^2+1\)

3 tháng 12 2023

`a, 8xy^2-2x^2y`

`= 2xy ( 4y - x)`

`b, x(x-y) -y(y-x)`

`= x(x-y) + y(x-y)`

`= (x-y)(x+y)`

`c, x(x-1) + (1-x)^2`

`= x(x-1)+(x-1)^2`

`= (x-1) (x+x-1)`

`=(x-1)(2x-1)`

28 tháng 9 2016

a) \(a^5+a^3-a^2-1\)

\(=a^5+a^4+a^3+a^3+a^2+a-a^4-a^3-a^2-a^2-a-1\) 

\(=a^3\left(a^2+a+1\right)+a\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)-\left(a^2+a+1\right)\)

\(=\left(a^3+a-a^2-1\right)\left(a^2+a+1\right)\)

\(=\left[\left(a^3-1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)

\(=\left[\left(a-1\right)\left(a^2+a+1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)

\(=\left(a-1\right)\left(a^2+a+1-a\right)\left(a^2+a+1\right)\)

\(=\left(a-1\right)\left(a^2+1\right)\left(a^2+a+1\right)\)

b) \(27a^2b^2-18ab+3\)

\(=3\left(9a^2b^2-6ab+1\right)\)

\(=3\left(3ab-1\right)^2\)

c) \(4-x^2-2xy-y^2\)

 \(=4-\left(x+y\right)^2\)

\(=\left(2-x-y\right)\left(2+x+y\right)\)

28 tháng 9 2016

Cam on nhe

DT
3 tháng 12 2023

\(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)=\left(x+1\right)\left(x-2\right)\)

\(2x\left(x-2\right)-\left(x-2\right)^2=\left(x-2\right)\left[2x-\left(x-2\right)\right]=\left(x-2\right)\left(2x-x+2\right)=\left(x-2\right)\left(x+2\right)\)

\(4x^2-20xy+25y^2=\left(2x\right)^2-2.2x.5y+\left(5y\right)^2=\left(2x-5y\right)^2\)

\(x^2+3x-x-3=x\left(x+3\right)-\left(x+3\right)=\left(x-1\right)\left(x+3\right)\)

\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

\(2y\left(x+2\right)-3x-6=2y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(2y-3\right)\)

5: \(\Leftrightarrow9\left(x^2-5x-4\right)=36\left(x+1\right)+8\left(x^2-10x\right)\)

\(\Leftrightarrow9x^2-45x-36-36x-36-8x^2+80x=0\)

\(\Leftrightarrow x^2-x-72=0\)

=>(x-9)(x+8)=0

=>x=9 hoặc x=-8

6: \(\Leftrightarrow x^2-9=9x-x^2-9+x\)

\(\Leftrightarrow2x^2-10x=0\)

=>2x(x-5)=0

=>x=0 hoặc x=5

23 tháng 1 2022

5, <=> 9x^2 - 45x - 36 = 36x + 36 + 8x^2 - 80x 

<=> x^2 - x - 72 = 0 <=> x = 9 ; x = -8 

6, <=> x^2 - 9 = 9x - x^2 - 9 + x = 10x - x^2 - 9 

<=> 2x^2 - 10x = 0 <=> x = 0 ; x = 5 

7, <=> (x-1)^2 = (3x+3)^2 

<=> (x-1-3x-3)(x-1+3x+3) = 0

<=> (-2x-4)(4x+2) = 0 <=> x = -2;x=-1/2

8, = (x^2-10x-15)(x^2-10x+25)

9 tháng 2 2023

\(\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}=\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}\) \(\left(dkxd:x\ne-2\right)\)

\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}-\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left[2\left(3x+1\right)-x\right]=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(6x+2-x\right)=0\)

Bỏ vế đằng trước \(x^2+x+1=0\) do vô nghiệm

\(\Leftrightarrow6x+2-x=0\)

\(\Leftrightarrow5x=-2\)

\(\Leftrightarrow x=-\dfrac{2}{5}\left(tmdk\right)\)

Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)

9 tháng 2 2023

\(\dfrac{\left(x^2+x+1\right).\left(3x+1\right)}{x+2}=\dfrac{\left(x^2+x+1\right).x}{2\left(x+2\right)}\)

hay \(\left(x^2+x+1\right).\dfrac{3x+1}{x+2}=\left(x^2+x+1\right).\dfrac{x}{2\left(x+2\right)}\)

31 tháng 10 2022

a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)

\(=x\left[49-\left(2x^2+x\right)^2\right]\)

\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)

b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)

\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)

c: \(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

e: =(x-9)(x+6)

a) \(x^2+4y^2+4xy\)

\(=x^2+2.x.2y+\left(2y\right)^2\)

\(=\left(x+2y\right)^2\)

b) \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x\)

\(=4xy\)

c) \(\left(3x+1\right)^2-\left(x+1\right)^2\)

\(=\left(3x+1-x-1\right)\left(3x+1+x-1\right)\)

a) \(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\)