Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
a) \(a^5+a^3-a^2-1\)
\(=a^5+a^4+a^3+a^3+a^2+a-a^4-a^3-a^2-a^2-a-1\)
\(=a^3\left(a^2+a+1\right)+a\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)-\left(a^2+a+1\right)\)
\(=\left(a^3+a-a^2-1\right)\left(a^2+a+1\right)\)
\(=\left[\left(a^3-1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)
\(=\left[\left(a-1\right)\left(a^2+a+1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)
\(=\left(a-1\right)\left(a^2+a+1-a\right)\left(a^2+a+1\right)\)
\(=\left(a-1\right)\left(a^2+1\right)\left(a^2+a+1\right)\)
b) \(27a^2b^2-18ab+3\)
\(=3\left(9a^2b^2-6ab+1\right)\)
\(=3\left(3ab-1\right)^2\)
c) \(4-x^2-2xy-y^2\)
\(=4-\left(x+y\right)^2\)
\(=\left(2-x-y\right)\left(2+x+y\right)\)
\(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)=\left(x+1\right)\left(x-2\right)\)
\(2x\left(x-2\right)-\left(x-2\right)^2=\left(x-2\right)\left[2x-\left(x-2\right)\right]=\left(x-2\right)\left(2x-x+2\right)=\left(x-2\right)\left(x+2\right)\)
\(4x^2-20xy+25y^2=\left(2x\right)^2-2.2x.5y+\left(5y\right)^2=\left(2x-5y\right)^2\)
\(x^2+3x-x-3=x\left(x+3\right)-\left(x+3\right)=\left(x-1\right)\left(x+3\right)\)
\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
\(2y\left(x+2\right)-3x-6=2y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(2y-3\right)\)
5: \(\Leftrightarrow9\left(x^2-5x-4\right)=36\left(x+1\right)+8\left(x^2-10x\right)\)
\(\Leftrightarrow9x^2-45x-36-36x-36-8x^2+80x=0\)
\(\Leftrightarrow x^2-x-72=0\)
=>(x-9)(x+8)=0
=>x=9 hoặc x=-8
6: \(\Leftrightarrow x^2-9=9x-x^2-9+x\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0 hoặc x=5
5, <=> 9x^2 - 45x - 36 = 36x + 36 + 8x^2 - 80x
<=> x^2 - x - 72 = 0 <=> x = 9 ; x = -8
6, <=> x^2 - 9 = 9x - x^2 - 9 + x = 10x - x^2 - 9
<=> 2x^2 - 10x = 0 <=> x = 0 ; x = 5
7, <=> (x-1)^2 = (3x+3)^2
<=> (x-1-3x-3)(x-1+3x+3) = 0
<=> (-2x-4)(4x+2) = 0 <=> x = -2;x=-1/2
8, = (x^2-10x-15)(x^2-10x+25)
\(\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}=\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}\) \(\left(dkxd:x\ne-2\right)\)
\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}-\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left[2\left(3x+1\right)-x\right]=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(6x+2-x\right)=0\)
Bỏ vế đằng trước \(x^2+x+1=0\) do vô nghiệm
\(\Leftrightarrow6x+2-x=0\)
\(\Leftrightarrow5x=-2\)
\(\Leftrightarrow x=-\dfrac{2}{5}\left(tmdk\right)\)
Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
a) \(x^2+4y^2+4xy\)
\(=x^2+2.x.2y+\left(2y\right)^2\)
\(=\left(x+2y\right)^2\)
b) \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x\)
\(=4xy\)
c) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x-1\right)\)
a) \(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\)
Đề là sao ? =)
Bạn đưa đề vậy giúp sao đc
Hok tốt :)
de chi the thi