K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Được vì lúc đó MO là đường trung trực của AB

24 tháng 7 2017

Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Vì A,B,C ∈ (O)

⇒ BO = OA = OC

⇒ BO = AC/2.

Tam giác ABC có đường trung tuyến BO và BO bằng một phần hai độ dài cạnh tương ứng AC

=> Tam giác ABC là tam giác vuông tại B ( định lí)

⇒ Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chứng minh tương tự

Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đường tròn tâm O và O’ bằng nhau ⇒ AC = AD.(AC,AD lần lượt là bán kính của (O) và (O’))

Xét hai tam giác vuông ΔABC và ΔABD có:

AB chung, AC = AD

⇒ ΔABC = ΔABD (cạnh huyền – cạnh góc vuông)

⇒ BC = BD(hai cạnh tương ứng)

⇒ Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9( định lý )

b) Xét tam giác AED có đường trung tuyến EO' bằng một phần hai cạnh tương ứng là AD ( O'E = O'A = O'D = AD/2)

=> Tam giác AED vuông tại E

⇒ Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ ΔECD vuông tại E.

Ta có:

Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

Suy ra: C, B, D thẳng hàng.

Tam giác ECD vuông có EB là đường trung tuyến ứng với cạnh huyền( Vì BC = BD câu (a) )

⇒ EB = BD (CD/2).

⇒ Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9(định lý) hay B là điểm chính giữa cung Giải bài 11 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Với hai cung nhỏ trong cùng một đường tròn hoặc hai đường tròn bằng nhau thì hai dây bằng nhau căng hai cung bằng nhau.

19 tháng 1 2022

TL :

Được vì lúc đó MO là đường trung trực của AB

HT

17 tháng 1 2022

a. Tam giác ABM nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại M

Suy ra: AN ⊥ BM

Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại C

Suy ra: AC ⊥ BN

Tam giác ABN có hai đường cao AC và BM cắt nhau tại E nên E là trực tâm của tam giác ABN

Suy ra: NE ⊥ AB

b. Ta có: MA = MN (tính chất đối xứng tâm)

ME = MF (tính chất đối xứng tâm)

Tứ giác AENF có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: AF // NE

Mà NE ⊥ AB (chứng minh trên)

Suy ra: AF ⊥ AB tại A

Vậy FA là tiếp tuyến của đường tròn (O).

c. Trong tam giác ABN ta có: AN ⊥ BM và AM = MN

Suy ra tam giác ABN cân tại B

Suy ra BA = BN hay N thuộc đường tròn (B; BA)

Tứ giác AFNE là hình bình hành nên AE // FN hay FN // AC

Mặt khác: AC ⊥ BN (chứng minh trên)

Suy ra: FN ⊥ BN tại N

Vậy FN là tiếp tuyến của đường tròn (B; BA).

19 tháng 1 2021

cần hình ib mình mình gửi cho nhé =) 

a) 

Vì (O) và (O′) cắt nhau tại hai điểm A và B nên OO′ vuông AB ( định lý )

- Xét tam giác ADC

 Có OO′ là đường trung bình ( vì O là trung điểm AC , O′ là trung điểm của AD)

Nên => OO′ // CD 

=>  AB vuông CD ( Quan hệ từ vuông góc đến song song )

Xét tam giác ADC 

Có AC = AD ( vì hai đường tròn (O) và (O′) có cùng bán kính )

=> Tam giác ACD cân tại A có AB là đường cao nên AB cũng là đường trung tuyến

 =>  BC = BD hay cung BC = cung BD  (vì (O) và (O′)  là hai đường tròn bằng nhau )

b) Xét đường tròn (O′) có A , E , D cùng thuộc đường tròn và AD là đường kính nên tam giác AED vuông tại E

\(\Rightarrow DE\perp AC\Rightarrow\widehat{DEC}=90^o\)

- Xét \(\Delta DEC\)vuông tại E có B là trung điểm DC ( cmt )

\(\Rightarrow EB=\frac{DC}{2}=BD=EB\)

=> Cung EB = cung BD ( định lý )

 Do đó B là điểm chính giữa cung ED

 


 

NV
25 tháng 3 2021

a. Do I là trung điểm AB \(\Rightarrow MN\perp AI\)

Mặt khác MN là đường kính \(\Rightarrow\widehat{MCN}=90^0\) (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác CDIN có \(\widehat{DCN}+\widehat{DIN}=90^0+90^0=180^0\Rightarrow CDIN\) nội tiếp

b. Xét hai tam giác vuông MID và MCN có \(\widehat{CMN}\) chung

\(\Rightarrow\Delta MID\sim\Delta MCN\Rightarrow\dfrac{MI}{MC}=\dfrac{MD}{MN}\)

\(\Rightarrow MC.MD=MI.MN\)

Mà MI cố định, MN cố định \(\Rightarrow MC.MD\) có giá trị không đổi khi D di động trên AB

undefined