Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chia hết cho 2 mà không chia hết cho 5 thì có chữ số cuối chẵn khác 0 nên các số thỏa mãn là: 954;984;648
Số chia hết cho 2 mà không chia hết cho 5 thì có chữ số cuối chẵn khác 0 nên các số thỏa mãn là: 954;984;648
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Câu còn lại làm nốt
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)
Đáp án cần chọn là: D
M = 21 31 + − 16 7 + 44 53 + 10 31 + 9 53 M = 21 31 + − 16 7 + 44 53 + 10 31 + 9 53 M = 21 31 + 10 31 + 44 53 + 9 53 + − 16 7 M = 1 + 1 + − 16 7 M = 2 + − 16 7 M = − 2 7
N = 1 2 + − 1 5 + − 5 7 + 1 6 + − 3 35 + 1 3 + 1 41 N = 1 2 + 1 6 + 1 3 + − 1 5 + − 5 7 + − 3 35 + 1 41 N = 3 + 1 + 2 6 + − 7 + − 25 + − 3 35 + 1 41 N = 1 + − 1 + 1 41 N = 1 41
tử của M=[(1/99)+(99/1)]x99/2=480298/99 tương tự mẫuM=1173/50
tử N=[22513/450] mẫu N=9919/1800
sao bấm ra số ảo quá. tính tỉ số tự tính đi.
Ta có: \(M=\frac{2014^2+1^2}{2014.1}+\frac{2013^2+2^2}{2013.2}+\frac{2012^2+3^2}{2012.3}+...+\frac{1008^2+1007^2}{1008.1007}\)
\(=\frac{2014}{1}+\frac{1}{2014}+\frac{2013}{2}+\frac{2}{2013}+\frac{2012}{3}+\frac{3}{2013}+...+\frac{1008}{1007}+\frac{1007}{1008}\)
\(=\frac{2014}{1}+\frac{2013}{2}+...+\frac{1}{2014}\)
\(=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{1}{2014}+1\right)\)
\(=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}=2015\)