Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
a: \(3^8:3^4+2^2\cdot2^3\)
=81+32
=123
b: \(3\cdot4^2-2\cdot3^2\)
\(=48-18\)
=30
a, 38: 34+ 22. 23
= 38-4 + 22+3
= 34 + 25
= 81 + 32
= 113
b, 3 . 42- 2 . 32
= 3 . 16 - 2 . 9
= 48 - 18
= 30
c, 84 : 4 + 39: 37+ 50
= 84 : 4 + 32 + 1
= 84 : 4 + 9 + 1
= 21 + 9 + 1
= 31
d, 295 - ( 31 - 22 . 5)2
= 295 - ( 31 - 4 . 5 )2
= 295 - ( 31 - 20 )2
= 295 - 112
= 295 - 121
= 174
e, 500 - {5[409 - (23 . 3 - 21)2 ] + 103 } : 15
= 500 - {5[409 - (8 . 3 - 21)2 ] + 103 } : 15
= 500 - {5[409 - (24 - 21)2 ] + 103 } : 15
= 500 - {5[409 - 32 ]+ 103 } : 15
= 500 - {5[409 - 9 ]+ 103 } : 15
= 500 - {5 . 400 + 1000 } : 15
= 500 - {2000 + 1000} : 15
= 500 - 3000 : 15
= 500 - 200
= 300
g, 53 . 2 - 100 : 4 + 23 . 5
= 125 . 2 - 100 : 4 + 8 . 5
= 250 - 25 + 40
= 225 + 40
= 265
h, 205 - [1200 - (42 - 2 . 3)3 ] : 40
= 205 - [ 1200 - ( 16 - 2 . 3 )3 : 40
= 205 - [ 1200 - ( 16 - 6 )3 ] : 40
= 205 - [ 1200 - 103 ] : 40
= 205 - [ 1200 - 1000 ] : 40
= 205 - 200 : 40
= 205 - 5
= 200
Đây nha bạn!!!
1) \(A=\left\{136-32.\left[\left(25:25+17.2016^0\right):3-3\right]\right\}:102.52\)
\(\Rightarrow A=\left\{136-32.\left[\left(1+17\right):3-3\right]\right\}:102.52\)
\(\Rightarrow A=\left[136-32.\left(18:3-3\right)\right]:102.52\)
\(\Rightarrow A=\left[136-32.\left(6-3\right)\right]:102.52\)
\(\Rightarrow A=\left(136-32.3\right):102.52\)
\(\Rightarrow A=\left(136-96\right):102.52\)
\(\Rightarrow A=40:102.52\)
\(\Rightarrow A=\dfrac{20}{51}.52\)
\(\Rightarrow A=\dfrac{1040}{51}\)
a: =1/8-1/8+2/5=2/5
b: =(-1/15-14/15)+(23/27+31/27)=2-1=1
c: \(=\dfrac{3}{7}\left(\dfrac{22}{21}+\dfrac{5}{21}+\dfrac{15}{21}\right)=\dfrac{3}{7}\cdot2=\dfrac{6}{7}\)
d: \(=\dfrac{-8}{9}\cdot\dfrac{3}{2}+\dfrac{1}{9}\cdot\dfrac{-3}{2}=-\dfrac{3}{2}\)
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
giúp mik đi~ahh~~huhuhu, giúp mik 2 bài ạ
m, (-2)3 . (-5)2
= -8 . 25
= -200