Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\mathop {\lim }\limits_{x \to + \infty } {\left( {\frac{1}{3}} \right)^x} = 0;\,\,\mathop {\lim }\limits_{x \to - \infty } {\left( {\frac{1}{3}} \right)^x} = + \infty \)
Hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) nghịch biến trên toàn R
Bảng biến thiên của hàm số:
Đồ thị hàm số:
Ví dụ về hàm số tuần hoàn là : \(g(x) = \left\{ \begin{array}{l}0\,\,\,\,\,\,\,,x \in Q\\1\,\,\,\,\,\,\,\,,x \in R\end{array} \right.\)
Xét hàm số
- Trường hợp x ≤ 0
f(x) = x + 2 là hàm đa thức, liên tục trên R nên nó liên tục trên (-2; 0]
- Trường hợp x > 0
f ( x ) = 1 / x 2 là hàm số phân thức hữu tỉ nên liên tục trên (2; 0) thuộc tập xác định của nó.
Như vậy f(x) liên tục trên (-2; 0] và trên (0; 2)
Tuy nhiên, vì nên hàm số f(x) không cógiới hạn hữu hạn tại x = 0. Do đó, nó không liên tục tại x = 0. Nghĩa là không liên tục trên (-2; 2)
\(2\sqrt{3}=\sqrt{12}< \sqrt{18}=3\sqrt{2}\)
=>\(2^{2\sqrt{3}}< 2^{3\sqrt{2}}\)
\(log_2x;log_3y\)
\(log_3x;log_5\left(x+2\right)\)