K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

Xét ΔBAC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)

Hình thang EDCB có 

M là trung điểm của EB

N là trung điểm của DC

Do đó: MN là đường trung bình của hình thang EDCB

Suy ra: MN//ED//BC và \(MN=\dfrac{ED+BC}{2}\)

\(\Leftrightarrow MN=\left(\dfrac{1}{2}BC+BC\right):2=\dfrac{3}{4}BC\)

Xét ΔEBD có

M là trung điểm của EB

MI//ED

Do đó: I là trung điểm của BD

Xét ΔBED có 

M là trung điểm của EB

I là trung điểm của BD

Do đó: MI là đường trung bình của ΔBED

Suy ra: \(MI=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(1\right)\)

Xét ΔECD có 

N là trung điểm của DC

NK//ED

Do đó: K là trung điểm của EC

Xét ΔECD có 

N là trung điểm của DC

K là trung điểm của EC

Do đó: NK là đường trung bình của ΔECD

Suy ra: \(NK=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(2\right)\)

Ta có: MI+IK+KN=MN

nên \(IK=\dfrac{1}{4}BC\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra MI=IK=KN

X³-4x+x-2=x×(x²-4)+(x-2) =x×(x-2)×(x+2)+(x-2) =(x-2)×(x×(x+2)+1)

Bài 2: 

Gọi K là trung điểm của AD và O là trung điểm của BC

Xét ΔABC có 

P là trung điểm của AC

O là trung điểm của BC

Do đó: PO là đường trung bình của ΔABC

Suy ra: PO//AB

hay PO//CD

Xét ΔDAB có

K là trung điểm của AD

Q là trung điểm của BD

Do đó: KQ là đường trung bình của ΔDAB

Suy ra: KQ//AB

hay KQ//CD

Xét ΔBDC có 

Q là trung điểm của BD

O là trung điểm của BC

Do đó: QO là đường trung bình của ΔBDC

Suy ra: QO//DC

Ta có: QO//DC

mà PO//DC

và QO,PO có điểm chung là O

nên Q,P,O thẳng hàng

Ta có: KQ//CD

QO//CD

mà KQ và QO có điểm chung là Q

nên K,Q,O thẳng hàng

mà Q,P,O thẳng hàng

nên K,Q,P,O thẳng hàng

hay QP//DC(1)

Xét ΔEAB có

M là trung điểm của EA

N là trung điểm của EB

Do đó: MN là đường trung bình của ΔEAB

Suy ra: MN//AB

hay MN//DC(2)

Từ (1) và (2) suy ra MN//PQ

Xét tứ giác MNPQ có MN//PQ

nên MNPQ là hình thang

Bài 8:

a) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà DB=EC(gt)

và AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AD=AE;AB=AC\right)\)

Do đó: DE//BC(Định lí Ta lét đảo)

c) Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Bài 7:

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có

AD=BC(ABCD là hình thang cân)

\(\widehat{B}=\widehat{C}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

\(\Leftrightarrow DE+EF=CF+FE\)

\(\Leftrightarrow DF=CE\)

b) Xét tứ giác ABFE có 

AE//BF(gt)

AE=BF(ΔAED=ΔBFC)

Do đó: ABFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB=EF(Hai cạnh đối)

1 tháng 9 2021

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x=t\)

\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)

\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)

Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)

1 tháng 9 2021

CHAO BAN

21 tháng 11 2021

Bài 1:

Đáp số: 12 kệ thuốc, 10 thùng thuốc

Vì khi cho 2 thùng lên 1 kệ thì thừa 7 kệ(gt)

=> Số kệ >7

Theo công thức: số kệ = thùng : 2+ 7

Vì khi 1 thùng để lên 2 kệ  thì thừa 4 thùng (gt)

=> Số thùng >4

Theo công thức: số thùng= thùng : 2 + 4

Từ đó, ta có thể suy ra được đáp số bằng cách rút gọn các số và cách giải cụ thể (hãy hỏi cô giáo)

 

Bài 4: 

a: =>3x=24

hay x=8

b: =>5x-2x=-11+3

=>3x=-8

hay x=-8/3

c: =>4/3x=17

hay x=51/4

d: =>3/7x=-8

hay x=-56/3

11 tháng 5 2021

viết lại đi lắn nót vào mới đọc được và hiểu được để mà trả lời chứ viết rõ chữ vào đừng viết tắt