K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

Từ \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\Rightarrow a+b+c=3abc\)

Áp dụng bất đẳng thức Cô-si ta được

\(P=\frac{ab^2}{a+b}+\frac{bc^2}{b+c}+\frac{ca^2}{c+a}\ge3\sqrt[3]{\frac{a^3b^3c^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

                                                              \(=\frac{3abc}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

                                                               \(\ge\frac{a+b+c}{\frac{a+b+b+c+c+a}{3}}\)

                                                            \(=\frac{a+b+c}{\frac{2\left(a+b+c\right)}{3}}\)

                                                               \(=\frac{3}{2}\)

Dấu "=" xảy ra < = > a = b = c = 1

          

                                                                                 

cho đề này:

cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)

3 tháng 2 2019

theo giả thiết => a+b+c=3abc

ta có:

\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)

=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2

dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)

4 tháng 2 2019

sorry mk nhầm xảy ra dấu = <=>a=b=c=1

19 tháng 11 2019

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

19 tháng 11 2019

b thiếu đề

8 tháng 7 2019

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT cosi

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)

Tương tự 

=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)

Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)

=> \(A\ge\frac{9}{4}\)

MinA=9/4 khi a=b=c=3

23 tháng 3 2019

Mình nghĩ đề nên cho a,b,c dương nếu không thì từ từ mình suy nghĩ

Đặt \(P=\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\)

Ta có:\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{\left(a+b\right)\left(a+c\right)}=\frac{\left(a-bc\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a-bc\right)\left(1-a\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)

\(=\frac{a-a^2-bc+abc}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}=\frac{a-a^2-bc+abc}{1-a-b-c+ab+bc+ca-abc}=\frac{a-a^2-bc+abc}{ab+bc+ca-abc}\)

\(\Rightarrow P=\frac{a+b+c-a^2-b^2-c^2-ab-bc-ca+3abc}{ab+bc+ca-abc}\)

\(P=\frac{1-\left(a+b+c\right)^2+ab+bc+ca+3abc}{ab+bc+ca-abc}\)

\(P=\frac{ab+bc+ca+3abc}{ab+bc+ca-abc}=1+\frac{4abc}{ab+bc+ca-abc}\)

Cần cm:\(\frac{4abc}{ab+bc+ca-abc}\le\frac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)\ge9abc\)(đúng theo AM-GM)

"="<=>a=b=c=1/3

24 tháng 3 2019

uk vương tuấn khải vậy bài giải đó