Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(2A=1-\frac{1}{2n+1}\)
\(A=\frac{1}{2}-\frac{1}{\left(2n+1\right).2}< \frac{1}{2}\)
Vậy:...
- Hok tốt ~
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
=>\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
=>\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}+\frac{1}{2n+1}\)
=>\(2A=1-\frac{1}{2n-1}\)
=>\(2A=\frac{2n}{2n+1}\)
=>\(A=\frac{2n}{4n+2}=\frac{2n}{2\left(n+1\right)}=\frac{n}{n+1}< \frac{1}{2}\)
zậy A<1/2
a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\frac{5}{8}\)
= \(\frac{8}{24}-\frac{15}{24}\)
= \(\frac{-7}{24}\)
b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)
= \(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)+ \(\frac{1}{13}\)
= \(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)
= \(\frac{1}{8}+\frac{1}{13}\)
= \(\frac{13}{104}+\frac{8}{104}\)
= \(\frac{23}{104}\)
c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)
= \(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)
= \(16:\left(\frac{-8}{9}\right)\)
= -18
có liền luôn nè
1/2 -43/101+(-1/3)-1/6
= -43/101+(-1/3)-1/6+1/2
=-43/101+0
=-43/101
Công thức tống quát:
\(1+\frac{1}{\left(n-1\right)\left(n+1\right)}=1+\frac{1}{n^2-1}=\frac{n^2-1+1}{n^2-1}=\frac{n^2}{n^2-1}\)
Theo đó, ta có:
\(1+\frac{1}{1.3}=1+\frac{1}{\left(2-1\right)\left(2+1\right)}=\frac{2^2}{2^2-1}\)
\(1+\frac{1}{2.4}=1+\frac{1}{\left(3-1\right)\left(3+1\right)}=\frac{3^2}{3^2-1}\)
\(1+\frac{1}{3.5}=\frac{1}{\left(4-1\right)\left(4+1\right)}=\frac{4^2}{4^2-1}\)
\(....................\)
\(1+\frac{1}{2015.2017}=1+\frac{1}{\left(2016-1\right)\left(2016+1\right)}=\frac{2016^2}{2016^2-1}\)
Nhân lần lượt các đẳng thức trên, ta được:
\(S=\frac{\left(2.3.4....2016\right)^2}{\left(2^2-1\right)\left(3^2-1\right)\left(4^2-1\right)...\left(2016^2-1\right)}=\frac{2^2.3^2.4^2...2016^2}{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(2015.2017\right)}=\frac{2^2.3^2.4^2...2016^2}{1.2.3^2.4^2.5^2...2014^2.2015^2.2016.2017}=\frac{2.2016}{2017}\)
\(\left(\frac{1}{6}\right)^5+\left(\frac{1}{8}\right)^3=\frac{1}{2^5}.\frac{1}{3^5}+\frac{1}{2^9}=\frac{1}{2^5}\left(\frac{1}{3^5}+\frac{1}{2^4}\right)=\frac{259}{124416}\)
Chúc bạn
học tốt!!!!!!!!!!!!!!!
\(\left(\frac{1}{6}\right)^5+\left(\frac{1}{8}\right)^3\)
= \(\frac{1}{7776}+\frac{1}{512}\)
= \(\frac{16}{124416}+\frac{243}{124416}\)
= \(\frac{259}{124416}\)
a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)
b, Làm tương tự nha bn
\(E=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(E=\frac{3.4.5...100}{2.3.4...99}\)
\(E=\frac{100}{2}\)
\(E=50\)
k cho mk nha
\(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)
\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow2n-1=3\)
\(2n=3+1\)
\(2n=4\)
\(\Rightarrow n=2\)
\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)
2n-1=3
2n=4
n=2