K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 1

\(\left\{{}\begin{matrix}x+my=1\\mx-y=-m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}my=1-x\\m\left(x+1\right)=y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{1-x}{y}\\m=\dfrac{y}{x+1}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1-x}{y}=\dfrac{y}{x+1}\)

\(\Rightarrow y^2=\left(1-x\right)\left(1+x\right)=1-x^2\)

\(\Rightarrow x^2+y^2=1\)

Đây là biểu thức liên hệ x; y không phụ thuộc m

11 tháng 1 2021

\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\left(1\right)\\x+my=2\left(2\right)\end{matrix}\right.\)

Từ (1) ⇒ mx=1-y⇒\(m=\dfrac{1-y}{x}\) Thay vào (2) ta được:

⇒x+\(\left(\dfrac{1-y}{x}\right)y\)=2⇒\(x+\dfrac{y-y^2}{x}=2\Rightarrow x^2+y-y^2=2\Rightarrow x^2-y^2+y=2\) 

Đây là hệ thức liên hệ giữa x và y ko phụ thuộc vào m

 

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{1}\ne\dfrac{1}{m-1}\)

=>\(\left(m-1\right)^2\ne1\)

=>\(m-1\notin\left\{1;-1\right\}\)

=>\(m\notin\left\{0;2\right\}\)

\(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+\left(m-1\right)\left[m-\left(m-1\right)x\right]=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+m\left(m-1\right)-x\left(m-1\right)^2=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x\left[1-\left(m-1\right)^2\right]=2-m\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left[\left(m-1\right)^2-1\right]=m\left(m-1\right)-2\\y=m-\left(m-1\right)x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m-1-1\right)\left(m-1+1\right)=\left(m-2\right)\left(m+1\right)\\y=m-\left(m-1\right)x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m}\\y=m-\dfrac{\left(m-1\right)\left(m+1\right)}{m}=\dfrac{m^2-m^2+1}{m}=\dfrac{1}{m}\end{matrix}\right.\)

=>\(x-y=\dfrac{m+1}{m}-\dfrac{1}{m}=1\) không phụ thuộc vào m

a:

Để hệ có nghiệm duy nhất thì m/2<>-2/-m

=>m^2<>4

=>m<>2 và m<>-2

 

 

NV
22 tháng 2 2020

Pt dưới chắc là x+my=2m

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=m\left(1-x\right)\\x=m\left(2-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{y-1}{1-x}\\m=\frac{x}{2-y}\end{matrix}\right.\)

\(\Rightarrow\frac{y-1}{1-x}=\frac{x}{2-y}\)

\(\Rightarrow x\left(1-x\right)=\left(y-1\right)\left(2-y\right)\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

7 tháng 1 2022

thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........