K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2020

ĐKXĐ: ...

\(\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+x+\frac{1}{y}=4\\x^2\left(x+\frac{1}{y}\right)+\frac{1}{y^2}\left(x+\frac{1}{y}\right)=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+x+\frac{1}{y}=4\\\left(x^2+\frac{1}{y^2}\right)\left(x+\frac{1}{y}\right)=4\end{matrix}\right.\)

Đặt \(\left(x^2+\frac{1}{y^2};x+\frac{1}{y}\right)=\left(u;v\right)\Rightarrow\left\{{}\begin{matrix}u+v=4\\uv=4\end{matrix}\right.\)

Theo Viet đảo, u và v là nghiệm:

\(t^2-4t+4=0\Rightarrow t=2\Rightarrow\left\{{}\begin{matrix}x^2+\frac{1}{y^2}=2\\x+\frac{1}{y}=2\end{matrix}\right.\)

Bạn tự giải nốt