K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)

=>\(-m^2\ne2\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=m^2\\2x+my=m^2+2m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-m^2\\2x+m\left(mx-m^2\right)=m^2+2m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-m^2\\2x+m^2x=m^3+m^2+2m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-m^2\\x\left(m^2+2\right)=\left(m+1\right)\left(m^2+2\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=mx-m^2=m\left(m+1\right)-m^2=m\end{matrix}\right.\)

Đặt \(A=x^2+3y+4\)

\(=\left(m+1\right)^2+3m+4\)

\(=m^2+5m+5\)

\(=m^2+2\cdot m\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{5}{4}\)

\(=\left(m+\dfrac{5}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)

Dấu '=' xảy ra khi m=-5/2

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

AH
Akai Haruma
Giáo viên
27 tháng 1

Lời giải:

Lấy PT(1) + 3PT(2) ta được:
$mx-3y+3x+3y=7$

$\Leftrightarrow x(m+3)=7(*)$

Để hpt có nghiệm duy nhất $(x,y)$ thì pt $(*)$ phải có nghiệm $x$ duy nhất.

Điều này xảy ra khi $m+3\neq 0\Leftrightarrow m\neq -3$
Khi đó:

$x=\frac{7}{m+3}$

$x=1-y=1-\frac{7}{m+3}=\frac{m-4}{m+3}$

Áp dụng BĐT Cô-si ta thấy:

$x^2+y^2\geq \frac{1}{2}(x+y)^2=\frac{1}{2}$

$\Rightarrow x^2+y^2$ đạt min bằng $\frac{1}{2}$. Giá trị này đạt tại $x=y$

$\Leftrightarrow \frac{7}{m+3}=\frac{m-4}{m+3}$

$\Leftrihgtarrow 7=m-4$

$\Leftrightarrow m=11$ 

18 tháng 2 2021

giúp mình vớiii

1 tháng 8 2018

mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .

d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)

th1: \(m+2=0\Leftrightarrow m=-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có vô số nghiệm

th2: \(m+2\ne0\Leftrightarrow m\ne-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

vậy khi +) \(m=-2\) phương trình có vô số nghiệm

+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

25 tháng 8 2018

Bạn làm phần c hộ mình với

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ