K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 1 2020

Lời giải:

HPT \( \Leftrightarrow \left\{\begin{matrix} \sqrt{2}y=6-(m+2018)x\\ 4x+(m+2018).\sqrt{2}y=9\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow 4x+(m+2018)[6-(m+2018)x]=9\sqrt{2}\)

\(\Leftrightarrow x[4-(m+2018)^2]=9\sqrt{2}-6(m+2018)\)

\(\Leftrightarrow -x(m+2020)(m+2016)=9\sqrt{2}-6(m+2018)(*)\)

Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất

Điều này xảy ra khi $(m+2020)(m+2016)\neq 0$

$\Leftrightarrow m\neq -2020$ và $m\neq -2016$

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

Lời giải:

HPT \( \Leftrightarrow \left\{\begin{matrix} \sqrt{2}y=6-(m+2018)x\\ 4x+(m+2018).\sqrt{2}y=9\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow 4x+(m+2018)[6-(m+2018)x]=9\sqrt{2}\)

\(\Leftrightarrow x[4-(m+2018)^2]=9\sqrt{2}-6(m+2018)\)

\(\Leftrightarrow -x(m+2020)(m+2016)=9\sqrt{2}-6(m+2018)(*)\)

Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất

Điều này xảy ra khi $(m+2020)(m+2016)\neq 0$

$\Leftrightarrow m\neq -2020$ và $m\neq -2016$

31 tháng 1 2023

`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:

`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`

`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`

`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`

`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`

`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`

`b){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`

`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`

`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

   Mà `-m^2+m-6` luôn `ne 0`

   `=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`

 `=>AA m` thì hệ ptr có `1` nghiệm duy nhất

`c){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`

Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`

                `=[-3m-6-12+3m]/[-3(m^2-m+6)]`

                `=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`

Vì `(m-1/2)^2+23/4 >= 23/4`

`<=>6/[(m-1/2)^2+23/4] <= 24/23`

Hay `x-y <= 24/23`

Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`

a: Khi m=căn 2 thì hệ sẽ là:

2x-y=căn 2+1 và x+y*căn 2=2

=>\(\left\{{}\begin{matrix}2x-y=\sqrt{2}+1\\2x+2y\sqrt{2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2y\sqrt{2}=\sqrt{2}-3\\2x-y=\sqrt{2}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-1+\sqrt{2}\\2x=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\sqrt{2}-1\end{matrix}\right.\)

b: Để hệ có nghiệm thì 2/1<>-1/m

=>-1/m<>2

=>m<>-1/2

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)

=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)

\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)

\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)

=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)

=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)

=>m(5m+4)=18m-9

=>\(5m^2-14m+9=0\)

=>(m-1)(5m-9)=0

=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)

=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2

=>x=2-1+m^2/m^2 và y=(m+1)x-m-1

=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2

x+y=(m^2+m+2)/m^2

Để x+y min thì m^2+m+2 min

=>m^2+m+1/4+7/4 min

=>(m+1/2)^2+7/4min

=>m=-1/2

20 tháng 1 2021

Hệ đẫ cho có nghiệm duy nhất khi \(m\ne-1\)

20 tháng 1 2021

\(\left\{{}\begin{matrix}x-y=1\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m\left(1+y\right)+y=m\end{matrix}\right.\)  \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m+my+y=m\end{matrix}\right.\)   \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y\left(m+1\right)=0\end{matrix}\right.\) (*)

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\) m + 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) -1

Khi đó: (*) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y=\dfrac{0}{m+1}=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+0=1\\y=0\end{matrix}\right.\)

Vậy m \(\ne\) -1 thì hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Chúc bn học tốt!

Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Tới đây bạn tự làm tiếp nhé

a: \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}y=2\\\dfrac{3}{2}x-y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\3x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=8\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2x-4=6\end{matrix}\right.\)

9 tháng 1 2022

Bạn làm hộ mình phần b thôi bn

 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1