Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)
\(=3\sqrt{5}+12\sqrt{2}\)
b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)
\(=9+3\sqrt{5}-4\sqrt{5}+4\)
\(=13-\sqrt{5}\)
c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)
\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)
\(=-\sqrt{5}\)
e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+1-2+\sqrt{3}\)
\(=2\sqrt{3}-1\)
f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+2\)
=3
e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+1-2+\sqrt{3}\)
\(=2\sqrt{3}-1\)
f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+2\)
=3
a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)
\(=3\sqrt{5}+12\sqrt{2}\)
b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)
\(=9+3\sqrt{5}-4\sqrt{5}+4\)
\(=13-\sqrt{5}\)
\(\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right)\left(\sqrt{18}-\sqrt{20}+2\sqrt{2}\right)\)
\(=\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right)\left(3\sqrt{2}-2\sqrt{5}+2\sqrt{2}\right)\)
\(=\left(5\sqrt{2}-\sqrt{5}\right)\left(5\sqrt{2}-2\sqrt{5}\right)\)
\(=50-10\sqrt{10}-5\sqrt{10}+10\)
\(=60-15\sqrt{10}\)
\(\left(1+\sqrt{2}-\sqrt{5}\right)\left(1+\sqrt{2}+\sqrt{5}\right)\)
\(=\left(1+\sqrt{2}\right)^2-5\)
\(=1+2\sqrt{2}+2-5\)
\(2\sqrt{2}-2\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
\(A=\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right)\left(\sqrt{18}-\sqrt{20}+2\sqrt{2}\right)\)
\(A=\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right)\left(\sqrt{9.2}-\sqrt{2^2.5}+2\sqrt{2}\right)\)
\(A=\left(5\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}+2\sqrt{2}\right)\)
\(A=\left(5\sqrt{2}-\sqrt{5}\right)\left(5\sqrt{2}-2\sqrt{5}\right)\)
\(A=\left(5\sqrt{2}.5\sqrt{2}\right)-\left(5\sqrt{2}.2\sqrt{5}\right)-\left(\sqrt{5}.5\sqrt{2}\right)+\left(\sqrt{5}.2\sqrt{5}\right)\)
\(A=50-10\sqrt{10}-5\sqrt{10}+10\)
\(A=60-5\sqrt{10}\)
Chúc bạn học tốt!!!
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
Trả lời:
\(\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right).\left(\sqrt{18}-\sqrt{20}+2\sqrt{2}\right)\)
\(=\left(5\sqrt{2}-\sqrt{5}\right).\left(3\sqrt{2}-2\sqrt{5}+2\sqrt{2}\right)\)
\(=\left(5\sqrt{2}-\sqrt{5}\right).\left(5\sqrt{2}-2\sqrt{5}\right)\)
\(=50-10\sqrt{10}-5\sqrt{10}+10\)
\(=60-15\sqrt{10}\)
Đề có nhầm ko nhỉ, thấy kì kì
\(=\left(\sqrt{8}-\sqrt{20}+\sqrt{18}\right)\left(\sqrt{18}-\sqrt{20}+\sqrt{8}\right)\)
\(=\left(\sqrt{8}+\sqrt{18}-\sqrt{20}\right)^2\)
\(=8+18+20+2\sqrt{144}-2\sqrt{160}-2\sqrt{360}\)
\(=70-8\sqrt{10}-12\sqrt{10}=70-20\sqrt{10}\)