K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Thừa số tổng quát:

\(1+\dfrac{1}{n^2+2n}=\dfrac{n^2+2n+1}{n^2+2n}=\dfrac{\left(n+1\right)^2}{\left(n+1\right)^2-1}\)

Đặt: \(\left(n+1\right)^2=t\ge0\) biểu thức được phát biểu dưới dạng: \(\dfrac{t}{t-1}\) Thay vào bài toán tìm được giá trị.

19 tháng 3 2017

Ta có A = $\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{9604}{9603}$

=$\frac{4}{3}.\frac{3.3}{4.2}.\frac{2.8}{3.5}.\frac{5.5}{8.3}....\frac{97^2}{9408}.\frac{98^2}{9603}$

Ta thấy nếu tử là số lẻ hoặc cơ số lẻ thì thừa số là cơ số , nếu tử là số chẵn thì thừa số nhỏ bằng cơ số chia 2 , thừa số lớn bằng cơ số nhân 2 còn mẫu số được phân tích thành 2 thừa số trong đó có 1 thừa số bằng thừa số trên tử của phân số liền trước đó

=> $\frac{98^2}{9603}=\frac{49.196}{97.99}$

Vậy A=$\frac{196}{99}$

19 tháng 3 2017

\(A=\left(\dfrac{4}{3}\right)\left(\dfrac{9}{8}\right)\left(\dfrac{16}{15}\right)...\left(\dfrac{9604}{9603}\right)\)

\(=\dfrac{2.2}{1.3}\times\dfrac{3.3}{2.4}\times\dfrac{4.4}{3.5}\times\times\times\dfrac{98.98}{97.99}\)

\(=\dfrac{2.3.4.....98}{1.2.3......97}\times\dfrac{2.3.4....98}{3.4.5....99}=\dfrac{98}{1}\times\dfrac{2}{99}=\dfrac{196}{99}\)

\(A=\dfrac{196}{99}\)

a, \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{4}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{16}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

...

\(=\left(1-\dfrac{1}{2^{2n}}\right)\left(1+\dfrac{1}{2^{2n}}\right).2=\left(1-\dfrac{1}{2^{4n}}\right).2=2-\dfrac{1}{2^{4n-1}}\)

Vậy ...

b,Sửa đề: \(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

Ta có:\(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

\(=\left(10-1\right).\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^2-1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^4-1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

...

\(=\left(10^{2n}-1\right)\left(10^{2n}+1\right).\dfrac{1}{9}=\left(10^{4n}-1\right).\dfrac{1}{9}=\dfrac{10^{4n}}{9}-\dfrac{1}{9}\)

Vậy ...

áp dụng hằng đẳng thức (a+b)(a-b)=a^2-b^2 Minh Hoang Hai

29 tháng 5 2018

Có bị nhầm đề không bạn?

29 tháng 5 2018

ko và mk cũng giải xong rồi

26 tháng 11 2017

Bài 1 : chị phân tích ra thừa số nguyên tố, rồi rút gọn đi là ok mak

Bài 2:

\(B=\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)........\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)........\left(12^4+\dfrac{1}{4}\right)}\)

\(=\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right).........\left(11^2-11+\dfrac{1}{2}\right)}{\left(2^2+1+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right).......\left(12^2-12+\dfrac{1}{2}\right)}\)

\(=\dfrac{\dfrac{1}{2}\left(1.2+\dfrac{1}{2}\right)\left(2.3+\dfrac{1}{2}\right).......\left(11.12+\dfrac{1}{2}\right)}{\left(2.3+\dfrac{1}{2}\right)\left(3.4+\dfrac{1}{2}\right)......... \left(12.13+\dfrac{1}{2}\right)}\)

\(=\dfrac{\dfrac{1}{2}}{12.13+\dfrac{1}{2}}\)

\(=\dfrac{1}{313}\)

26 tháng 11 2017

\(A=\dfrac{35.\left(27^8+2.9^{11}\right)}{15.\left(81^6-12.3^{19}\right)}\)

\(=\dfrac{35.27^8+35.2.9^{11}}{15.81^6-15.12.3^{19}}\)

\(=\dfrac{5.7.\left(3^3\right)^8+5.7.\left(3^2\right)^{11}}{3.5.\left(3^4\right)^6-3.5.3.2^2.3^{19}}\)

\(=\dfrac{5.7.3^{24}+5.7.3^{22}}{5.3^{25}-3^{21}.2^2.5}\)

\(=\dfrac{5.7.3^{22}\left(3^2+1\right)}{5.3^{21}\left(3^4-2^2\right)}\)

\(=\dfrac{7.2.10}{81-4}\)

\(=\dfrac{720}{77}\)

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

8 tháng 3 2017

\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{120}\right)\)

\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{121}{120}\)

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{11^2}{10.12}\)

\(=\dfrac{2}{1}.\dfrac{2}{3}.\dfrac{3}{2}.\dfrac{3}{4}.\dfrac{4}{3}...\dfrac{11}{10}.\dfrac{11}{12}\)

\(=\dfrac{2}{1}\left(\dfrac{2}{3}.\dfrac{3}{2}\right)\left(\dfrac{3}{4}.\dfrac{4}{3}\right)...\left(\dfrac{10}{11}.\dfrac{11}{10}\right).\dfrac{11}{12}\)

\(=\dfrac{2}{1}.\dfrac{11}{12}\)

\(=\dfrac{11}{6}\)

8 tháng 3 2017

\(\dfrac{11}{6}\)

29 tháng 8 2017

A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)

Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)

B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)

Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)

= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)

= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)

= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)

= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)

Vậy ...

\(A=\dfrac{3}{\left(1\cdot2\right)^2}+\dfrac{5}{\left(2\cdot3\right)^2}+\dfrac{7}{\left(3\cdot4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(A=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+\dfrac{7}{9\cdot16}+...+\dfrac{2n+1}{n^2\cdot\left(n^2+2n+1\right)}\)

\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)

\(A=1-\dfrac{1}{n^2+2n+1}\)

\(A=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)