K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

Chọn A

Khi lấy đối xứng đồ thị hàm số y= f(x)  qua trục hoành ta sẽ được đồ thị hàm số y= -f(x)

Như vậy lấy đối xứng đồ thị hàm số y= log5x  ta được đồ thị hàm số  

20 tháng 6 2017

3 tháng 2 2017

15 tháng 4 2018

+ Từ đồ thị của hàm số   a> 0 ta dễ dàng có được đồ thị hàm số y= f’(x)  như sau:

Ta có : f’(x) = 4ax3+ 2bx

 Đồ thị hàm số y= f’(x)  đi qua  ta tìm được a=1 và b= -2

Suy ra hàm số đã cho có dạng: f(x) =x4-2x2+d và f’(x) = 4x3-4x.

+ Do (C) tiếp xúc với trục hoành nên f’(x) = 0 khi x=0; x=1; x=- 1.

Do (C) đối xứng qua trục tung nên (C) tiếp xúc với trục hoành tại 2 điểm (1; 0) và (-1; 0).

Do đó: f(0) =1  suy ra 1= 0-2.0+ d nên d= 1

Vậy hàm số cần tìm là: y =x4-2x2+1 

+ Xét phương trình hoành độ giao điểm của (C) với trục hoành:

x4-2x2+1  =0 nên x=± 1

Chọn D.

 

17 tháng 3 2018

+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số  đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0)  nên  a= 1/3 ; b= -1 ; c= 0.

Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x= 2 nghĩa là:

 f( 2) = 0 hay  8/3-4+ d= 0  nên d= 4/3

Chọn D.

2 tháng 11 2018

Đáp án C

Cả hai khẳng định đều sai vì thiếu điều kiện hàm số liên tục.

 

24 tháng 7 2017

15 tháng 2 2018

Chọn D

Xét  y   =   log a   x ; ( 0   <   a   ≠   1 ) ( C 0 ), y = f(x)(C), (C) đối xứng với ( C 0 ) qua I(2;1).

Gọi điểm  đối xứng với nhau qua điểm I(2;1), ta có:

thay vào phương trình của ( C 0 ) ta được:

Suy ra  = -2017

Như vậy,