Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {1 - a} \right)^2} + {\left( { - 3 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = \frac{{ - 1}}{2}\end{array} \right.\)
Vậy \(I\left( {3; - \frac{1}{2}} \right)\) và \(R = IA = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}} = \frac{{\sqrt {41} }}{2}\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 3} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{41}}{4}\)
Gọi phương trình đường tròn (C) là: x2 + y2 – 2ax – 2by + c = 0.
a) Do A(1; 2) ∈ (C) ⇔ 12 + 22 – 2.a.1 – 2.b.2 + c = 0
⇔ 5 – 2a – 4b + c = 0 ⇔ 2a + 4b – c = 5 (1)
Do B(5; 2) ∈ (C) ⇔ 52 + 22 – 2.a.5 – 2.b.2+ c = 0
⇔ 29 – 10a – 4b + c = 0 ⇔ 10a + 4b – c = 29 (2)
Do C(1; –3) ∈ (C) ⇔ 12 + (–3)2 – 2.a.1 – 2.b.(–3) + c = 0
⇔ 10 – 2a + 6b + c = 0 ⇔ 2a – 6b – c = 10 (3)
Từ (1), (2) và (3) ta có hệ phương trình :
Giải hệ phương trình trên ta được nghiệm a = 3, b = –1/2, c = –1.
Vậy đường tròn đi qua ba điểm A, B, C là : x2 + y2 – 6x + y – 1 = 0.
b)
M(–2 ; 4) ∈ (C) ⇔ (–2)2 + 42 – 2.a.(–2) – 2.b.4 + c = 0 ⇔ 4a – 8b + c = –20 (1)
N(5; 5) ∈ (C) ⇔ 52 + 52 – 2.a.5 – 2.b.5 + c = 0 ⇔ 10a + 10b – c = 50 (2)
P(6; –2) ∈ (C) ⇔ 62 + (–2)2 – 2.a.6 – 2.b.(–2) + c = 0 ⇔ 12a – 4b – c = 40 (3)
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ phương trình trên ta được nghiệm a = 2, b = 1, c = –20.
Vậy đường tròn đi qua ba điểm M, N, P là : x2 + y2 – 4x – 2y – 20 = 0.
Gọi phương trình đường tròn là . x 2 + y 2 − 2 a x − 2 b y + c = 0
Do đường tròn qua A(-1; 3), B(1; 4), C(3; 2) nên ta có
− 1 2 + 3 2 − 2. − 1 a − 2.3 b + c = 0 1 2 + 4 2 − 2.1. a − 2.4 b + c = 0 3 2 + 2 2 − 2.3 a − 2.2 b + c = 0
⇒ 2 a − 6 b + c = − 10 − 2 a − 8 b + c = − 17 − 6 a − 4 b + c = − 13 ⇔ a = 5 6 b = 11 6 c = − 2 3
Phương trình đường tròn là x 2 + y 2 − 5 3 x − 11 3 y − 2 3 = 0 . Đáp án B.
Chú ý. Học sinh có thể tìm tâm và bán kính trước rồi suy ra phương trình của đường tròn, tuy nhiên cách làm này dài hơn. Khi có phương trình tổng quát của đường tròn rồi thì có ngay thông tin của tâm và bán kính của đường tròn.
Gọi phương trình đường tròn là x 2 + y 2 − 2 a x − 2 b y + c = 0 . Do đường tròn qua A(1;2),
B( -1;1), C(2;3) nên ta có
1 2 + 2 2 − 2.1. a − 2.2. b + c = 0 − 1 2 + 1 2 − 2. − 1 . a − 2.1. b + c = 0 2 2 + 3 2 − 2.2. a − 2.3. b + c = 0 ⇔ − 2 a − 4 b + c = − 5 2 a − 2 b + c = − 2 − 4 a − 6 b + c = − 13 ⇔ a = − 5 2 b = 13 2 c = 16
Phương trình đường tròn là: x 2 + y 2 + 5 x – 13 y + 16 = 0
ĐÁP ÁN A
a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)
b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}} = \sqrt 2 \)
Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)
c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)
d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)
Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}} = \sqrt {29} \)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)
e) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\) b
Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)
Gọi \(d,\Delta \) lần lượt là đường trung trực của hai đoạn thẳng MN, NP. Đường thẳng d đi qua trung điểm I của đoạn MN và vuông góc với MN.
Ta có: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{4 + 2}}{2} = 3\\{y_I} = \frac{{{y_M} + {y_N}}}{2} = \frac{{ - 5 - 1}}{2} = - 3\end{array} \right. \Rightarrow I\left( {3;3} \right);\overrightarrow {MN} = \left( { - 2;4} \right) \Rightarrow \overrightarrow {{n_d}} = \frac{{ - 1}}{2}\overrightarrow {MN} = \left( {1; - 2} \right)\)
Phương trình tổng quát của \(d\) là: \(1\left( {x - 3} \right) - 2\left( {y + 3} \right) = 0 \Leftrightarrow x - 2y - 9 = 0\).
Tương tự, ta có phương trình đường thẳng \(\Delta \) là: \(x - 7y - 34 = 0\).
Gọi \(J\) là tâm đường tròn đi qua ba điểm M, N, P. Khi đó \(J = d \cap \Delta \), do đó tọa điểm \(J\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - 7y - 34 = 0\\x - 2y - 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = - 5\end{array} \right. \Rightarrow J\left( { - 1; - 5} \right)\)
Từ đó ta tìm được \(R = JM = 5\)
Vậy phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).
Cách 2:
Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)
\(M\left( {4; - 5} \right),N\left( {2; - 1} \right),P\left( {3; - 8} \right)\) thuộc (C) nên ta có:
\(\left\{ \begin{array}{l}
16 + 25 + 8a - 10b + c = 0\\
4 + 1 + 4a - 2b + c = 0\\
9 + 64 + 6a - 16b + c = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
8a - 10b + c = - 41\\
4a - 2b + c = - 5\\
6a - 16b + c = - 73
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = 1\\
b = 5 \,\,\, \rm{(thỏa mãn)}\\
c = 1
\end{array} \right.\)
Vậy phương trình đường tròn đi qua 3 điểm M, N, P là: \({x^2} + {y^2} + 2x + 10y + 1 = 0\) hay \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).
a) (C) có tâm I và đi qua M nên bán kính R = IM
Ta có:
Vậy đường tròn (C) : (x + 2)2 + (y – 3)2 = 52.
b) (C) tiếp xúc với (Δ) : x – 2y + 7 = 0
⇒ d(I; Δ) = R
Mà
Vậy đường tròn (C) :
c) (C) có đường kính AB nên (C) có :
+ tâm I là trung điểm của AB
Vậy đường tròn (C) : (x – 4)2 + (y – 3)2 = 13.
Sử dụng phương trình đường tròn : x2 – y2 – ax – 2by +c = 0
Đường tròn đi qua điểm A(1; 2):
12 + 22 – 2a -4b + c = 0 <=> 2a + 4b – c = 5
Đường tròn đi qua điểm B(5; 2):
52 + 22 – 10a -4b + c = 0 <=> 10a + 4b – c = 29
Đường tròn đi qua điểm C(1; -3):
12 + (-3)2 – 2a + 6b + c = 0 <=> 2a – 6b – c = 10
Để tìm a, b, c ta giải hệ:
Lấy (2) trừ cho (1) ta được phương trình: 8a = 24 => a = 3
Lấy (3) trừ cho (1) ta được phương trình: -10b = 5 => b = – 0,5
Thế a = 3 ; b = -0.5 vào (1) ta tính được c = -1
Ta được phương trình đường tròn đi qua ba điểm A, B, C là :
x2 + y2 – 6x + y – 1 = 0
Chú ý:
Tâm I(x; y) của đường tròn đi qua ba điểm A, B, C là điểm cách đều ba điểm ấy, hay
IA = IB = IC => IA2 = IB2 = IC2
Từ đây suy ra x, y là nghiệm của hệ:
<=> I(3; )
Từ đây ta tìm được R và viết được phương trình đường tròn.