Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = –x2 + 3x + 2 có a = –1 < 0, b = 3, c = 2:
+ Tập xác định D = R
+ Đồng biến trên , nghịch biến trên
Bảng biến thiên:
+ Đồ thị là parabol có:
Trục đối xứng là đường thẳng x = 3/2
Giao điểm với trục tung là B(0 ; 2). Điểm đối xứng với B qua đường thẳng x = 3/2 là C(3 ; 2).
Đi qua các điểm (–1 ; –2) và (4 ; –2)
y = –x2 + x – 1
+ Tập xác định R
+ Đỉnh A(1/2 ; –3/4).
+ Trục đối xứng x = 1/2.
+ Đồ thị không giao với trục hoành.
+ Giao điểm với trục tung: B(0; –1).
Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/2 là C(1 ; –1).
+ Bảng biến thiên:
+ Đồ thị hàm số :
y = 3x2 – 4x + 1.
+ Tập xác định: R.
+ Đỉnh A(2/3 ; –1/3).
+ Trục đối xứng x = 2/3.
+ Giao điểm với Ox tại B(1/3 ; 0) và C(1 ; 0).
+ Giao điểm với Oy tại D(0 ; 1).
+ Bảng biến thiên:
+ Đồ thị hàm số :
y = –x2 + 4x – 4.
+ Tập xác định: R
+ Đỉnh: I (2; 0)
+ Trục đối xứng: x = 2.
+ Giao điểm với trục hoành: A(2; 0).
+ Giao điểm với trục tung: B(0; –4).
Điểm đối xứng với điểm B(0; –4) qua đường thẳng x = 2 là C(4; –4).
+ Bảng biến thiên:
+ Đồ thị hàm số:
y = –3x2 + 2x – 1.
+ Tập xác định: R
+ Đỉnh A(1/3 ; –2/3).
+ Trục đối xứng x = 1/3.
+ Đồ thị không giao với trục hoành.
+ Giao điểm với trục tung là B(0; –1).
Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/3 là C(2/3 ; –1).
+ Bảng biến thiên:
+ Đồ thị hàm số :
Hàm số y = x2 – 2x – 1 có a = 1 > 0 ; b = –2 ; c = –1:
+ Tập xác định D = R.
+ Nghịch biến trên (–∞ ; 1) ; đồng biến trên (1 ; + ∞).
Bảng biến thiên:
+ Đồ thị hàm số là parabol có:
Đỉnh A(1 ; –2)
Trục đối xứng là đường thẳng x = 1.
Giao điểm với Oy tại B(0 ; –1). Điểm đối xứng với B qua đường thẳng x = 1 là C(2 ; –1).
Đi qua các điểm (3 ; 2) và (–1 ; 2).
y = 4x2 – 4x + 1.
+ Tập xác định : R
+ Đỉnh A(1/2; 0).
+ Trục đối xứng x = 1/2.
+ Giao điểm với trục hoành tại đỉnh A.
+ Giao điểm với trục tung B(0; 1).
Điểm đối xứng với B(0;1) qua đường thẳng x = 1/2 là C(1; 1).
+ Bảng biến thiên:
+ Đồ thị hàm số:
y = 2x2 + x + 1
+ Tập xác định: R
+ Đỉnh A(–1/4 ; 7/8).
+ Trục đối xứng x = –1/4.
+ Đồ thị không giao với trục hoành.
+ Giao điểm với trục tung B(0; 1).
Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)
+ Bảng biến thiên:
+ Đồ thị hàm số:
Ta có thể viết
và đồ thị của hàm số y = x + |x| được vẽ trên hình 34.